These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28958932)

  • 21. SIRAH: a structurally unbiased coarse-grained force field for proteins with aqueous solvation and long-range electrostatics.
    Darré L; Machado MR; Brandner AF; González HC; Ferreira S; Pantano S
    J Chem Theory Comput; 2015 Feb; 11(2):723-39. PubMed ID: 26575407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-scale simulations of nucleoprotein complexes: ribosomes, nucleosomes, chromatin, chromosomes and CRISPR.
    Sanbonmatsu KY
    Curr Opin Struct Biol; 2019 Apr; 55():104-113. PubMed ID: 31125796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pulling chromatin fibers: computer simulations of direct physical micromanipulations.
    Katritch V; Bustamante C; Olson WK
    J Mol Biol; 2000 Jan; 295(1):29-40. PubMed ID: 10623506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. X-ray structure of a tetranucleosome and its implications for the chromatin fibre.
    Schalch T; Duda S; Sargent DF; Richmond TJ
    Nature; 2005 Jul; 436(7047):138-41. PubMed ID: 16001076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changing chromatin fiber conformation by nucleosome repositioning.
    Müller O; Kepper N; Schöpflin R; Ettig R; Rippe K; Wedemann G
    Biophys J; 2014 Nov; 107(9):2141-50. PubMed ID: 25418099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The SIRAH 2.0 Force Field: Altius, Fortius, Citius.
    Machado MR; Barrera EE; Klein F; Sóñora M; Silva S; Pantano S
    J Chem Theory Comput; 2019 Apr; 15(4):2719-2733. PubMed ID: 30810317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MD Simulations of Viruslike Particles with Supra CG Solvation Affordable to Desktop Computers.
    Machado MAR; González HC; Pantano S
    J Chem Theory Comput; 2017 Oct; 13(10):5106-5116. PubMed ID: 28876928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural flexibility of the nucleosome core particle at atomic resolution studied by molecular dynamics simulation.
    Roccatano D; Barthel A; Zacharias M
    Biopolymers; 2007 Apr 5-15; 85(5-6):407-21. PubMed ID: 17252562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CGMD Platform: Integrated Web Servers for the Preparation, Running, and Analysis of Coarse-Grained Molecular Dynamics Simulations.
    Marchetto A; Si Chaib Z; Rossi CA; Ribeiro R; Pantano S; Rossetti G; Giorgetti A
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33333836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implementation of residue-level coarse-grained models in GENESIS for large-scale molecular dynamics simulations.
    Tan C; Jung J; Kobayashi C; Torre DU; Takada S; Sugita Y
    PLoS Comput Biol; 2022 Apr; 18(4):e1009578. PubMed ID: 35381009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. spFRET reveals changes in nucleosome breathing by neighboring nucleosomes.
    Buning R; Kropff W; Martens K; van Noort J
    J Phys Condens Matter; 2015 Feb; 27(6):064103. PubMed ID: 25564102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural insights of nucleosome and the 30-nm chromatin fiber.
    Zhu P; Li G
    Curr Opin Struct Biol; 2016 Feb; 36():106-15. PubMed ID: 26872330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy.
    Suzuki Y; Higuchi Y; Hizume K; Yokokawa M; Yoshimura SH; Yoshikawa K; Takeyasu K
    Ultramicroscopy; 2010 May; 110(6):682-8. PubMed ID: 20236766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Post-Translational Modifications at the Coarse-Grained Level with the SIRAH Force Field.
    Garay PG; Barrera EE; Pantano S
    J Chem Inf Model; 2020 Feb; 60(2):964-973. PubMed ID: 31840995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coarse-grained force fields for molecular simulations.
    Barnoud J; Monticelli L
    Methods Mol Biol; 2015; 1215():125-49. PubMed ID: 25330962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling chromatin structure and dynamics: status and prospects.
    Korolev N; Fan Y; Lyubartsev AP; Nordenskiöld L
    Curr Opin Struct Biol; 2012 Apr; 22(2):151-9. PubMed ID: 22305428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics simulations for the study of chromatin biology.
    Brandani GB; Gopi S; Yamauchi M; Takada S
    Curr Opin Struct Biol; 2022 Dec; 77():102485. PubMed ID: 36274422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational strategies to address chromatin structure problems.
    Perišić O; Schlick T
    Phys Biol; 2016 Jun; 13(3):035006. PubMed ID: 27345617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coarse-grained versus atomistic simulations: realistic interaction free energies for real proteins.
    May A; Pool R; van Dijk E; Bijlard J; Abeln S; Heringa J; Feenstra KA
    Bioinformatics; 2014 Feb; 30(3):326-34. PubMed ID: 24273239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleosome positioning and composition modulate in silico chromatin flexibility.
    Clauvelin N; Lo P; Kulaeva OI; Nizovtseva EV; Diaz-Montes J; Zola J; Parashar M; Studitsky VM; Olson WK
    J Phys Condens Matter; 2015 Feb; 27(6):064112. PubMed ID: 25564155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.