These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28959010)

  • 1. The Quasi-Coarse-Grained Dynamics Method to Unravel the Mesoscale Evolution of Defects/Damage during Shock Loading and Spall Failure of Polycrystalline Al Microstructures.
    Agarwal G; Valisetty RR; Namburu RR; Rajendran AM; Dongare AM
    Sci Rep; 2017 Sep; 7(1):12376. PubMed ID: 28959010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the Mesoscale Evolution of Microstructure during Supersonic Impact of Aluminum Powder Particles.
    Suresh S; Lee SW; Aindow M; Brody HD; Champagne VK; Dongare AM
    Sci Rep; 2018 Jul; 8(1):10075. PubMed ID: 29973642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergy of Spall Strength and Toughness in Nanograined Metals.
    Zhu Y; Qian S; Qiu L; Yang X; Yang Y; Luo G; Shen Q; Tong Q
    Nano Lett; 2024 Apr; 24(14):4217-4223. PubMed ID: 38551179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling the Role of Interfaces on the Spall Failure of Cu/Ta Multilayered Systems.
    Chen J; Mathaudhu SN; Thadhani N; Dongare AM
    Sci Rep; 2020 Jan; 10(1):208. PubMed ID: 31937793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling Anisotropy in Crystalline Orientation under Shock-Induced Dynamic Responses in High-Entropy Alloy Co
    Wu Y; Shao J
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of Preset Void and Damage Characteristics in Aluminum during Shock Compression and Release.
    Wan YT; Shao JL; Yu GZ; Guo EF; Shu H; Huang XG
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational modeling and simulation of spall fracture in polycrystalline solids by an atomistic-based interfacial zone model.
    Lin L; Zeng X
    Eng Fract Mech; 2015 Jul; 142():50-63. PubMed ID: 26435546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spallation Characteristics of Single Crystal Aluminum with Copper Nanoparticles Based on Atomistic Simulations.
    Jiang DD; Chen PY; Wang P; He AM
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2002 Sep; 1(1):45-8. PubMed ID: 12618848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural deformation process of shock-compressed polycrystalline aluminum.
    Ichiyanagi K; Takagi S; Kawai N; Fukaya R; Nozawa S; Nakamura KG; Liss KD; Kimura M; Adachi SI
    Sci Rep; 2019 May; 9(1):7604. PubMed ID: 31110218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A coarse-grain reactive model of RDX: Molecular resolution at the μm scale.
    Lee BH; Sakano MN; Larentzos JP; Brennan JK; Strachan A
    J Chem Phys; 2023 Jan; 158(2):024702. PubMed ID: 36641383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A maximum in the strength of nanocrystalline copper.
    Schiøtz J; Jacobsen KW
    Science; 2003 Sep; 301(5638):1357-9. PubMed ID: 12958354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Shock-Induced Deformation and Spallation Failure of Bicrystal Copper with a Nanoscale Helium Bubble via Molecular Dynamics Simulations.
    Zhu Q; Shao J; Wang P
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarse-Grain Model Simulations of Nonequilibrium Dynamics in Heterogeneous Materials.
    Brennan JK; Lísal M; Moore JD; Izvekov S; Schweigert IV; Larentzos JP
    J Phys Chem Lett; 2014 Jun; 5(12):2144-9. PubMed ID: 26270506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformation Twinning in Polycrystalline Mg Microstructures at High Strain Rates at the Atomic Scales.
    Agarwal G; Dongare AM
    Sci Rep; 2019 Mar; 9(1):3550. PubMed ID: 30837557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competing roles of interfaces and matrix grain size in the deformation and failure of polycrystalline Cu-graphene nanolayered composites under shear loading.
    Zhang S; Xu Y; Liu X; Luo SN
    Phys Chem Chem Phys; 2018 Sep; 20(36):23694-23701. PubMed ID: 30191248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomistic modeling of mechanical properties of polycrystalline graphene.
    Mortazavi B; Cuniberti G
    Nanotechnology; 2014 May; 25(21):215704. PubMed ID: 24785113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Idealized vs. Realistic Microstructures: An Atomistic Simulation Case Study on γ/γ
    Prakash A; Bitzek E
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation crossover: from nano- to mesoscale.
    Cheng S; Stoica AD; Wang XL; Ren Y; Almer J; Horton JA; Liu CT; Clausen B; Brown DW; Liaw PK; Zuo L
    Phys Rev Lett; 2009 Jul; 103(3):035502. PubMed ID: 19659294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pressure-transferable coarse-grained potential for modeling the shock Hugoniot of polyethylene.
    Agrawal V; Peralta P; Li Y; Oswald J
    J Chem Phys; 2016 Sep; 145(10):104903. PubMed ID: 27634275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.