These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28959010)

  • 21. A pressure-transferable coarse-grained potential for modeling the shock Hugoniot of polyethylene.
    Agrawal V; Peralta P; Li Y; Oswald J
    J Chem Phys; 2016 Sep; 145(10):104903. PubMed ID: 27634275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite element modeling of grain size effects on the ultrasonic microstructural noise backscattering in polycrystalline materials.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2018 Jul; 87():182-202. PubMed ID: 29547790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unraveling and Mapping the Mechanisms for Near-Surface Microstructure Evolution in CuNi Alloys under Sliding.
    Eder SJ; Rodríguez Ripoll M; Cihak-Bayr U; Dini D; Gachot C
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32197-32208. PubMed ID: 32539335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Multi-Scale Study on Deformation and Failure Process of Metallic Structures in Extreme Environment.
    Li ZH; Lu C; Shi A; Zhao S; Ou B; Wei N
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Temperature on Deformation and Fracture Behaviour of Nanostructured Polycrystalline Ni Under Tensile Hydrostatic Stress by Molecular Dynamics Simulation.
    Pei L; Lu C; Tang Q; Zhang Y; Li J; Zhang C; Zhao X; Tieu K
    J Nanosci Nanotechnol; 2019 May; 19(5):2723-2731. PubMed ID: 30501772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of grain size on the microstructures and mechanical properties of 304 austenitic steel processed by torsional deformation.
    Gu J; Zhang L; Ni S; Song M
    Micron; 2018 Feb; 105():93-97. PubMed ID: 29245115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films.
    Rajagopalan J; Han JH; Saif MT
    Science; 2007 Mar; 315(5820):1831-4. PubMed ID: 17395826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micromechanism of Cold Deformation of Two-Phase Polycrystalline Ti⁻Al Alloy with Void.
    Feng R; Wang M; Li H; Qi Y; Wang Q; Rui Z
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30621116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.
    Han X; Wang L; Yue Y; Zhang Z
    Ultramicroscopy; 2015 Apr; 151():94-100. PubMed ID: 25576291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasticity without dislocations in a polycrystalline intermetallic.
    Luo H; Sheng H; Zhang H; Wang F; Fan J; Du J; Ping Liu J; Szlufarska I
    Nat Commun; 2019 Aug; 10(1):3587. PubMed ID: 31399566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The shock and spall response of three industrially important hexagonal close-packed metals: magnesium, titanium and zirconium.
    Hazell PJ; Appleby-Thomas GJ; Wielewski E; Escobedo JP
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2023):20130204. PubMed ID: 25071240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of Grain Boundaries under Long-Time Radiation.
    Zhu Y; Luo J; Guo X; Xiang Y; Chapman SJ
    Phys Rev Lett; 2018 Jun; 120(22):222501. PubMed ID: 29906160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atomistic Simulation of Microstructural Evolution of Ni
    Liu S; Lin Y; Wu T; Wang G
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics.
    Beyerlein IJ; Hunter A
    Philos Trans A Math Phys Eng Sci; 2016 Apr; 374(2066):. PubMed ID: 27002063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional X-ray diffraction imaging of dislocations in polycrystalline metals under tensile loading.
    Cherukara MJ; Pokharel R; O'Leary TS; Baldwin JK; Maxey E; Cha W; Maser J; Harder RJ; Fensin SJ; Sandberg RL
    Nat Commun; 2018 Sep; 9(1):3776. PubMed ID: 30224669
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale.
    McCarty J; Clark AJ; Copperman J; Guenza MG
    J Chem Phys; 2014 May; 140(20):204913. PubMed ID: 24880331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrahigh strength in nanocrystalline materials under shock loading.
    Bringa EM; Caro A; Wang Y; Victoria M; McNaney JM; Remington BA; Smith RF; Torralva BR; Van Swygenhoven H
    Science; 2005 Sep; 309(5742):1838-41. PubMed ID: 16166512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interface microstructure effects on dynamic failure behavior of layered Cu/Ta microstructures.
    Kumar R; Chen J; Mishra A; Dongare AM
    Sci Rep; 2023 Jul; 13(1):11365. PubMed ID: 37443120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations.
    Fan Y; Osetskiy YN; Yip S; Yildiz B
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17756-61. PubMed ID: 24114271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analytical and Numerical Modeling of Stress Field and Fracture in Aluminum/Epoxy Interface Subjected to Laser Shock Wave: Application to Paint Stripping.
    Papadopoulos K; Tserpes K
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.