BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 28959035)

  • 1. The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus.
    Matzov D; Aibara S; Basu A; Zimmerman E; Bashan A; Yap MF; Amunts A; Yonath AE
    Nat Commun; 2017 Sep; 8(1):723. PubMed ID: 28959035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the
    Beckert B; Abdelshahid M; Schäfer H; Steinchen W; Arenz S; Berninghausen O; Beckmann R; Bange G; Turgay K; Wilson DN
    EMBO J; 2017 Jul; 36(14):2061-2072. PubMed ID: 28468753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1.
    Beckert B; Turk M; Czech A; Berninghausen O; Beckmann R; Ignatova Z; Plitzko JM; Wilson DN
    Nat Microbiol; 2018 Oct; 3(10):1115-1121. PubMed ID: 30177741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conservation of two distinct types of 100S ribosome in bacteria.
    Ueta M; Wada C; Daifuku T; Sako Y; Bessho Y; Kitamura A; Ohniwa RL; Morikawa K; Yoshida H; Kato T; Miyata T; Namba K; Wada A
    Genes Cells; 2013 Jul; 18(7):554-74. PubMed ID: 23663662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of 100S ribosomes in Staphylococcus aureus by the hibernation promoting factor homolog SaHPF.
    Ueta M; Wada C; Wada A
    Genes Cells; 2010 Jan; 15(1):43-58. PubMed ID: 20015224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures and dynamics of hibernating ribosomes from
    Khusainov I; Vicens Q; Ayupov R; Usachev K; Myasnikov A; Simonetti A; Validov S; Kieffer B; Yusupova G; Yusupov M; Hashem Y
    EMBO J; 2017 Jul; 36(14):2073-2087. PubMed ID: 28645916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disassembly of the
    Basu A; Yap MN
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):E8165-E8173. PubMed ID: 28894000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hibernating ribosomes exhibit chaperoning activity but can resist unfolded protein-mediated subunit dissociation.
    Ferdosh S; Banerjee S; Pathak BK; Sengupta J; Barat C
    FEBS J; 2021 Feb; 288(4):1305-1324. PubMed ID: 32649051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy.
    Franken LE; Oostergetel GT; Pijning T; Puri P; Arkhipova V; Boekema EJ; Poolman B; Guskov A
    Nat Commun; 2017 Sep; 8(1):722. PubMed ID: 28959045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal and Nutritional Regulation of Ribosome Hibernation in Staphylococcus aureus.
    Basu A; Shields KE; Eickhoff CS; Hoft DF; Yap MN
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30297357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimerization of long hibernation promoting factor from Staphylococcus aureus: Structural analysis and biochemical characterization.
    Usachev KS; Fatkhullin BF; Klochkova EA; Miftakhov AK; Golubev AA; Bikmullin AG; Nurullina LI; Garaeva NS; Islamov DR; Gabdulkhakov AG; Lekontseva NV; Tishchenko SV; Balobanov VA; Khusainov IS; Yusupov MM; Validov SZ
    J Struct Biol; 2020 Jan; 209(1):107408. PubMed ID: 31669310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hibernating 100S complex is a target of ribosome-recycling factor and elongation factor G in
    Basu A; Shields KE; Yap MF
    J Biol Chem; 2020 May; 295(18):6053-6063. PubMed ID: 32209660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis.
    Kline BC; McKay SL; Tang WW; Portnoy DA
    J Bacteriol; 2015 Feb; 197(3):581-91. PubMed ID: 25422304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ribosome modulation factor (RMF) binding site on the 100S ribosome of Escherichia coli.
    Yoshida H; Maki Y; Kato H; Fujisawa H; Izutsu K; Wada C; Wada A
    J Biochem; 2002 Dec; 132(6):983-9. PubMed ID: 12473202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 100S ribosome: ribosomal hibernation induced by stress.
    Yoshida H; Wada A
    Wiley Interdiscip Rev RNA; 2014; 5(5):723-32. PubMed ID: 24944100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryo-EM structure of the hibernating Thermus thermophilus 100S ribosome reveals a protein-mediated dimerization mechanism.
    Flygaard RK; Boegholm N; Yusupov M; Jenner LB
    Nat Commun; 2018 Oct; 9(1):4179. PubMed ID: 30301898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosome hibernation factor promotes Staphylococcal survival and differentially represses translation.
    Basu A; Yap MN
    Nucleic Acids Res; 2016 Jun; 44(10):4881-93. PubMed ID: 27001516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activities of Escherichia coli ribosomes in IF3 and RMF change to prepare 100S ribosome formation on entering the stationary growth phase.
    Yoshida H; Ueta M; Maki Y; Sakai A; Wada A
    Genes Cells; 2009 Feb; 14(2):271-80. PubMed ID: 19170772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress response as implemented by hibernating ribosomes: a structural overview.
    Matzov D; Bashan A; Yap MF; Yonath A
    FEBS J; 2019 Sep; 286(18):3558-3565. PubMed ID: 31230411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of the N-terminal domain of the Staphylococcus aureus hibernation promoting factor.
    Usachev KS; Validov SZ; Khusainov IS; Varfolomeev AA; Klochkov VV; Aganov AV; Yusupov MM
    J Biomol NMR; 2019 May; 73(5):223-227. PubMed ID: 31165320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.