These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28959119)

  • 1. Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph.
    Ghamari M; Aguilar C; Soltanpur C; Nazeran H
    Proc South Biomed Eng Conf; 2016 Mar; 2016():175-176. PubMed ID: 28959119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and prototyping of a wristband-type wireless photoplethysmographic device for heart rate variability signal analysis.
    Ghamari M; Soltanpur C; Cabrera S; Romero R; Martinek R; Nazeran H
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4967-4970. PubMed ID: 28269383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless photoplethysmographic device for heart rate variability signal acquisition and analysis.
    Reyes I; Nazeran H; Franco M; Haltiwanger E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2092-5. PubMed ID: 23366333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reflectance-Based Organic Pulse Meter Sensor for Wireless Monitoring of Photoplethysmogram Signal.
    Elsamnah F; Bilgaiyan A; Affiq M; Shim CH; Ishidai H; Hattori R
    Biosensors (Basel); 2019 Jul; 9(3):. PubMed ID: 31295893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of a Wireless Bluetooth Photoplethysmography Sensor Used on the Earlobe for Monitoring Heart Rate Variability Features during a Stress-Inducing Mental Task in Healthy Individuals.
    Correia B; Dias N; Costa P; Pêgo JM
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals.
    Bolanos M; Nazeran H; Haltiwanger E
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4289-94. PubMed ID: 17946618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable Wireless Sensors for Measuring Calorie Consumption.
    Fotouhi-Ghazvini F; Abbaspour S
    J Med Signals Sens; 2020; 10(1):19-34. PubMed ID: 32166074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Smart Mandibular Advancement Device for Intraoral Cardiorespiratory Monitoring.
    Nabavi S; Debbarma S; Bhadra S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4079-4084. PubMed ID: 33018895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Hypertension Prediction Based on PPG-Derived HRV Signals: a Feasibility Study.
    Lan KC; Raknim P; Kao WF; Huang JH
    J Med Syst; 2018 Apr; 42(6):103. PubMed ID: 29680866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The PhysioCam: A Novel Non-Contact Sensor to Measure Heart Rate Variability in Clinical and Field Applications.
    Davila MI; Lewis GF; Porges SW
    Front Public Health; 2017; 5():300. PubMed ID: 29214150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smart photoplethysmographic sensor for pulse wave registration at different vascular depths.
    Leier M; Pilt K; Karai D; Jervan G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1849-52. PubMed ID: 26736641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Three Prototypes of PPG Sensors for Continual Real-Time Measurement in Weak Magnetic Field.
    Přibil J; Přibilová A; Frollo I
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In obstructive sleep apnea patients, automatic determination of respiratory arrests by photoplethysmography signal and heart rate variability.
    Bozkurt MR; Uçar MK; Bozkurt F; Bilgin C
    Australas Phys Eng Sci Med; 2019 Dec; 42(4):959-979. PubMed ID: 31515685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heart rate variability estimation in photoplethysmography signals using Bayesian learning approach.
    Alqaraawi A; Alwosheel A; Alasaad A
    Healthc Technol Lett; 2016 Jun; 3(2):136-42. PubMed ID: 27382483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal fiducial points for pulse rate variability analysis from forehead and finger photoplethysmographic signals.
    Peralta E; Lazaro J; Bailon R; Marozas V; Gil E
    Physiol Meas; 2019 Feb; 40(2):025007. PubMed ID: 30669123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A System Based on Photoplethysmography and Photobiomodulation for Autonomic Nervous System Measurement and Adjustment.
    Shan YC; Fang W; Wu JH
    Life (Basel); 2023 Feb; 13(2):. PubMed ID: 36836921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of heart and respiratory rates in newborn infants using a new photoplethysmographic technique.
    Johansson A; Oberg PA; Sedin G
    J Clin Monit Comput; 1999 Dec; 15(7-8):461-7. PubMed ID: 12578044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart rate variability (HRV) in deep breathing tests and 5-min short-term recordings: agreement of ear photoplethysmography with ECG measurements, in 343 subjects.
    Weinschenk SW; Beise RD; Lorenz J
    Eur J Appl Physiol; 2016 Aug; 116(8):1527-35. PubMed ID: 27278521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Design of a Front-end Device of Heart Rate Variability Analysis System Based on Photoplethysmography].
    Shi L; Sun P; Pang Y; Luo Z; Wang W; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Feb; 33(1):14-7. PubMed ID: 27382733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals.
    Jeyhani V; Mahdiani S; Peltokangas M; Vehkaoja A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5952-5. PubMed ID: 26737647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.