These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 28959725)

  • 21. Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit.
    Brink S; Nease S; Hasler P
    Neural Netw; 2013 Sep; 45():39-49. PubMed ID: 23541925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse.
    Sung SH; Kim TJ; Shin H; Im TH; Lee KJ
    Nat Commun; 2022 May; 13(1):2811. PubMed ID: 35589710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network.
    Wu C; Yu H; Lee S; Peng R; Takeuchi I; Li M
    Nat Commun; 2021 Jan; 12(1):96. PubMed ID: 33398011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast synaptic events in a chalcogenide memristor.
    Li Y; Zhong Y; Xu L; Zhang J; Xu X; Sun H; Miao X
    Sci Rep; 2013; 3():1619. PubMed ID: 23563810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-Stimuli-Responsive Synapse Based on Vertical van der Waals Heterostructures.
    Zhou J; Li H; Tian M; Chen A; Chen L; Pu D; Hu J; Cao J; Li L; Xu X; Tian F; Malik M; Xu Y; Wan N; Zhao Y; Yu B
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35917-35926. PubMed ID: 35882423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-chip microprocessor that communicates directly using light.
    Sun C; Wade MT; Lee Y; Orcutt JS; Alloatti L; Georgas MS; Waterman AS; Shainline JM; Avizienis RR; Lin S; Moss BR; Kumar R; Pavanello F; Atabaki AH; Cook HM; Ou AJ; Leu JC; Chen YH; Asanović K; Ram RJ; Popović MA; Stojanović VM
    Nature; 2015 Dec; 528(7583):534-8. PubMed ID: 26701054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-Scale and Flexible Optical Synapses for Neuromorphic Computing and Integrated Visible Information Sensing Memory Processing.
    Hou YX; Li Y; Zhang ZC; Li JQ; Qi DH; Chen XD; Wang JJ; Yao BW; Yu MX; Lu TB; Zhang J
    ACS Nano; 2021 Jan; 15(1):1497-1508. PubMed ID: 33372769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-memory computing on a photonic platform.
    Ríos C; Youngblood N; Cheng Z; Le Gallo M; Pernice WHP; Wright CD; Sebastian A; Bhaskaran H
    Sci Adv; 2019 Feb; 5(2):eaau5759. PubMed ID: 30793028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supported Lipid Bilayers Coupled to Organic Neuromorphic Devices Modulate Short-Term Plasticity in Biomimetic Synapses.
    Lubrano C; Bruno U; Ausilio C; Santoro F
    Adv Mater; 2022 Apr; 34(15):e2110194. PubMed ID: 35174916
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications.
    Portner K; Schmuck M; Lehmann P; Weilenmann C; Haffner C; Ma P; Leuthold J; Luisier M; Emboras A
    ACS Nano; 2021 Sep; 15(9):14776-14785. PubMed ID: 34459580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Retina-Inspired Optoelectronic Synapse Using Quantum Dots for Neuromorphic Photostimulation of Neurons.
    Balamur R; Eren GO; Kaleli HN; Karatum O; Kaya L; Hasanreisoglu M; Nizamoglu S
    Adv Sci (Weinh); 2024 May; 11(18):e2401753. PubMed ID: 38447181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Retina-Inspired Optoelectronic Synapse Using Quantum Dots for Neuromorphic Photostimulation of Neurons.
    Balamur R; Eren GO; Kaleli HN; Karatum O; Kaya L; Hasanreisoglu M; Nizamoglu S
    Adv Sci (Weinh); 2024 May; 11(20):e2306097. PubMed ID: 38514908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subwavelength grating enabled on-chip ultra-compact optical true time delay line.
    Wang J; Ashrafi R; Adams R; Glesk I; Gasulla I; Capmany J; Chen LR
    Sci Rep; 2016 Jul; 6():30235. PubMed ID: 27457024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses.
    Nishitani Y; Kaneko Y; Ueda M
    IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):2999-3008. PubMed ID: 26595417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuromorphic Dynamical Synapses With Reconfigurable Voltage-Gated Kinetics.
    Wang J; Cauwenberghs G; Broccard FD
    IEEE Trans Biomed Eng; 2020 Jul; 67(7):1831-1840. PubMed ID: 31647418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short-Term Plasticity and Long-Term Potentiation in Artificial Biosynapses with Diffusive Dynamics.
    Kim MK; Lee JS
    ACS Nano; 2018 Feb; 12(2):1680-1687. PubMed ID: 29357225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proposal for an All-Spin Artificial Neural Network: Emulating Neural and Synaptic Functionalities Through Domain Wall Motion in Ferromagnets.
    Sengupta A; Shim Y; Roy K
    IEEE Trans Biomed Circuits Syst; 2016 Dec; 10(6):1152-1160. PubMed ID: 27214912
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device.
    Seo K; Kim I; Jung S; Jo M; Park S; Park J; Shin J; Biju KP; Kong J; Lee K; Lee B; Hwang H
    Nanotechnology; 2011 Jun; 22(25):254023. PubMed ID: 21572200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability.
    Wu C; Kim TW; Choi HY; Strukov DB; Yang JJ
    Nat Commun; 2017 Sep; 8(1):752. PubMed ID: 28963546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Full imitation of synaptic metaplasticity based on memristor devices.
    Wu Q; Wang H; Luo Q; Banerjee W; Cao J; Zhang X; Wu F; Liu Q; Li L; Liu M
    Nanoscale; 2018 Mar; 10(13):5875-5881. PubMed ID: 29508884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.