BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2895974)

  • 1. Conversion of ammonia to glutamate by L-glutamic dehydrogenase, alcohol dehydrogenase and NAD+ immobilized within lipid-polyamide polyethyleneimine microcapsules.
    Ilan E; Chang TM
    Adv Exp Med Biol; 1987; 223():189-92. PubMed ID: 2895974
    [No Abstract]   [Full Text] [Related]  

  • 2. Lipid-polyamide-polyethyleneimine microcapsules for immobilization of free cofactors and multienzyme system.
    Ilan E; Chang TM
    Appl Biochem Biotechnol; 1986 Dec; 13(3):221-30. PubMed ID: 3545075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of glucose dehydrogenase in converting urea and ammonia into amino acid using artificial cells.
    Chang TM; Malouf C
    Artif Organs; 1979 Feb; 3(1):38-41. PubMed ID: 435122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of ammonia or urea into L-leucine, L-valine, and L-isoleucine using artificial cells containing an immobilized multienzyme system and dextran-NAD+. Glucose dehydrogenase for co-factor recycling.
    Gu KF; Chang TM
    ASAIO Trans; 1988; 34(1):24-8. PubMed ID: 2454127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of ammonia or urea into essential amino acids, L-leucine, L-valine, and L-isoleucine, using artificial cells containing an immobilized multienzyme system and dextran-NAD+. 2. Yeast alcohol dehydrogenase for coenzyme recycling.
    Gu KF; Chang TM
    Biotechnol Appl Biochem; 1990 Jun; 12(3):227-36. PubMed ID: 1694439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of urea or ammonia into essential amino acids (L-leucine, L-valine, and L-isoleucine) using multienzyme systems and NADH-dextran immobilised in artificial cells.
    Gu KF; Chang TM
    Biomater Artif Cells Artif Organs; 1987; 15(1):297-303. PubMed ID: 3449145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical analysis of the glutamate dehydrogenase kinetics under physiological conditions.
    Popova SV; Reich JG
    Biomed Biochim Acta; 1983; 42(1):27-36. PubMed ID: 6136273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the glutamate dehydrogenase reaction in furnishing aspartate nitrogen for urea synthesis: studies in perfused rat liver with 15N.
    Nissim I; Horyn O; Luhovyy B; Lazarow A; Daikhin Y; Nissim I; Yudkoff M
    Biochem J; 2003 Nov; 376(Pt 1):179-88. PubMed ID: 12935293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of waste metabolites in uremia by microencapsulated reactants.
    Sparks RE; Salemme RM; Meier PM; Litt MH; Lindan O
    Trans Am Soc Artif Intern Organs; 1969; 15():353-9. PubMed ID: 5791409
    [No Abstract]   [Full Text] [Related]  

  • 10. Conversion of ammonia or urea into essential amino acids, L-leucine, L-valine, and L-isoleucine using artificial cells containing an immobilized multienzyme system and dextran-NAD. L-lactic dehydrogenase for coenzyme recycling.
    Gu KF; Chang TM
    Appl Biochem Biotechnol; 1990 Nov; 26(2):115-24. PubMed ID: 1708978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Glutamate dehydrogenase from rat brain. Properties of the enzyme when acting in the direction of glutamate degradation].
    González MP; Cañadas S; Alonso C; Ventura ME; Caldés T
    Rev Esp Fisiol; 1982; 38 Suppl():45-9. PubMed ID: 6128774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of D-glutamate on mycelial growth and glutamate dehydrogenase enzymes of Coprinus lagopus.
    Al-Gharawi A; Moore D
    J Gen Microbiol; 1974 Dec; 85(2):274-82. PubMed ID: 4155717
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of chronic ethanol or acetaldehyde on hepatic alcohol and aldehyde dehydrogenases, aminotransferases and glutamate dehydrogenase.
    Cascales C; Cascales M; Santos-Ruiz A
    Rev Esp Fisiol; 1985 Mar; 41(1):19-27. PubMed ID: 2860705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracerebral pH regulation and ammonia detoxification.
    Van Gelder NM
    Adv Exp Med Biol; 1982; 153():501-8. PubMed ID: 6131577
    [No Abstract]   [Full Text] [Related]  

  • 15. Absence of involvement of glutamine synthetase and of NAD-linked glutamate dehydrogenase in the nitrogen catabolite repression of arginase and other enzymes in Saccharomyces cerevisiae.
    Dubois EL; Grenson M
    Biochem Biophys Res Commun; 1974 Sep; 60(1):150-7. PubMed ID: 4153896
    [No Abstract]   [Full Text] [Related]  

  • 16. Inactivation in vivo of glutamine synthetase and NAD-specific glutamate dehydrogenase: its role in the regulation of glutamine synthesis in yeasts.
    Ferguson AR; Sims AP
    J Gen Microbiol; 1971 Dec; 69(3):423-7. PubMed ID: 4401344
    [No Abstract]   [Full Text] [Related]  

  • 17. Activity of select dehydrogenases with sepharose-immobilized N(6)-carboxymethyl-NAD.
    Beauchamp J; Vieille C
    Bioengineered; 2015; 6(2):106-10. PubMed ID: 25611453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the kinetic mechanism of halophilic NADP-dependent glutamate dehydrogenase.
    Bonete MJ; Camacho ML; Cadenas E
    Biochim Biophys Acta; 1990 Dec; 1041(3):305-10. PubMed ID: 1980084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonia assimilation by rhizobium cultures and bacteroids.
    Brown CM; Dilworth MJ
    J Gen Microbiol; 1975 Jan; 86(1):39-48. PubMed ID: 234505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A kinetic study of the oxidative deamination of L-glutamate by Peptostreptococcus asaccharolyticus glutamate dehydrogenase using a variety of coenzymes.
    Hornby DP; Engel PC
    Eur J Biochem; 1984 Sep; 143(3):557-60. PubMed ID: 6148240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.