These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 28959881)
1. Purification and Dissolution of Carbon Nanotube Fibers Spun from the Floating Catalyst Method. Tran TQ; Headrick RJ; Bengio EA; Myo Myint S; Khoshnevis H; Jamali V; Duong HM; Pasquali M ACS Appl Mater Interfaces; 2017 Oct; 9(42):37112-37119. PubMed ID: 28959881 [TBL] [Abstract][Full Text] [Related]
2. Post-Treatments for Multifunctional Property Enhancement of Carbon Nanotube Fibers from the Floating Catalyst Method. Tran TQ; Fan Z; Mikhalchan A; Liu P; Duong HM ACS Appl Mater Interfaces; 2016 Mar; 8(12):7948-56. PubMed ID: 26966936 [TBL] [Abstract][Full Text] [Related]
3. Influence of Carbon Nanotube Characteristics on Macroscopic Fiber Properties. Tsentalovich DE; Headrick RJ; Mirri F; Hao J; Behabtu N; Young CC; Pasquali M ACS Appl Mater Interfaces; 2017 Oct; 9(41):36189-36198. PubMed ID: 28937741 [TBL] [Abstract][Full Text] [Related]
4. Effect of CNT Oxidation on the Processing and Properties of Superacid-Spun CNT Fibers. Cheng K; Cheng L; Jiang X; Wang Z; Pan J; Fang N; Zhang Z; Qu S; Lyu W Chem Asian J; 2024 Oct; 19(19):e202400327. PubMed ID: 38987921 [TBL] [Abstract][Full Text] [Related]
5. High conductivity transparent carbon nanotube films deposited from superacid. Hecht DS; Heintz AM; Lee R; Hu L; Moore B; Cucksey C; Risser S Nanotechnology; 2011 Feb; 22(7):075201. PubMed ID: 21233544 [TBL] [Abstract][Full Text] [Related]
6. Significantly Increased Solubility of Carbon Nanotubes in Superacid by Oxidation and Their Assembly into High-Performance Fibers. Lee J; Lee DM; Kim YK; Jeong HS; Kim SM Small; 2017 Oct; 13(38):. PubMed ID: 28786553 [TBL] [Abstract][Full Text] [Related]
7. Strong and Conductive Dry Carbon Nanotube Films by Microcombing. Zhang L; Wang X; Xu W; Zhang Y; Li Q; Bradford PD; Zhu Y Small; 2015 Aug; 11(31):3830-6. PubMed ID: 25941071 [TBL] [Abstract][Full Text] [Related]
8. Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation. Liu P; Fan Z; Mikhalchan A; Tran TQ; Jewell D; Duong HM; Marconnet AM ACS Appl Mater Interfaces; 2016 Jul; 8(27):17461-71. PubMed ID: 27322344 [TBL] [Abstract][Full Text] [Related]
9. Morphology dependent field emission of acid-spun carbon nanotube fibers. Fairchild SB; Boeckl J; Back TC; Ferguson JB; Koerner H; Murray PT; Maruyama B; Lange MA; Cahay MM; Behabtu N; Young CC; Pasquali M; Lockwood NP; Averett KL; Gruen G; Tsentalovich DE Nanotechnology; 2015 Mar; 26(10):105706. PubMed ID: 25694166 [TBL] [Abstract][Full Text] [Related]
10. High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration. Lee J; Kim T; Jung Y; Jung K; Park J; Lee DM; Jeong HS; Hwang JY; Park CR; Lee KH; Kim SM Nanoscale; 2016 Dec; 8(45):18972-18979. PubMed ID: 27808334 [TBL] [Abstract][Full Text] [Related]
11. Alignment of Carbon Nanotubes in Carbon Nanotube Fibers Through Nanoparticles: A Route for Controlling Mechanical and Electrical Properties. Hossain MM; Islam MA; Shima H; Hasan M; Lee M ACS Appl Mater Interfaces; 2017 Feb; 9(6):5530-5542. PubMed ID: 28106367 [TBL] [Abstract][Full Text] [Related]
12. Obtaining high mechanical performance silk fibers by feeding purified carbon nanotube/lignosulfonate composite to silkworms. Xu H; Yi W; Li D; Zhang P; Yoo S; Bai L; Hou J; Hou X RSC Adv; 2019 Jan; 9(7):3558-3569. PubMed ID: 35518113 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning. Ryu SW; Hwang JW; Hong SH J Nanosci Nanotechnol; 2012 Jul; 12(7):5653-7. PubMed ID: 22966627 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of High Content Carbon Nanotube-Polyurethane Sheets with Tailorable Properties. Martinez-Rubi Y; Ashrafi B; Jakubinek MB; Zou S; Laqua K; Barnes M; Simard B ACS Appl Mater Interfaces; 2017 Sep; 9(36):30840-30849. PubMed ID: 28829567 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Electrical and Mechanical Properties of Chemically Cross-Linked Carbon-Nanotube-Based Fibers and Their Application in High-Performance Supercapacitors. Wang G; Kim SK; Wang MC; Zhai T; Munukutla S; Girolami GS; Sempsrott PJ; Nam S; Braun PV; Lyding JW ACS Nano; 2020 Jan; 14(1):632-639. PubMed ID: 31877019 [TBL] [Abstract][Full Text] [Related]
16. Spun Carbon Nanotube Fibres and Films as an Alternative to Printed Electronic Components. Taborowska P; Giżewski T; Patmore J; Janczak D; Jakubowska M; Lekawa-Raus A Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963300 [TBL] [Abstract][Full Text] [Related]
17. Clothing polymer fibers with well-aligned and high-aspect ratio carbon nanotubes. Sun G; Zheng L; An J; Pan Y; Zhou J; Zhan Z; Pang JH; Chua CK; Leong KF; Li L Nanoscale; 2013 Apr; 5(7):2870-4. PubMed ID: 23446516 [TBL] [Abstract][Full Text] [Related]
18. Mechanical and Electrical Properties of Direct Spun Carbon Nanotube Fibers Exposed to Ultrahigh Temperatures in Vacuum. Zhang XS; Yang LW; Liu HT; Zu M J Nanosci Nanotechnol; 2018 Jun; 18(6):4264-4269. PubMed ID: 29442772 [TBL] [Abstract][Full Text] [Related]
19. A Meta-Analysis of Conductive and Strong Carbon Nanotube Materials. Bulmer JS; Kaniyoor A; Elliott JA Adv Mater; 2021 Sep; 33(36):e2008432. PubMed ID: 34278614 [TBL] [Abstract][Full Text] [Related]
20. Carbon nanotube functionalization as a route to enhancing the electrical and mechanical properties of Cu-CNT composites. Milowska KZ; Burda M; Wolanicka L; Bristowe PD; Koziol KKK Nanoscale; 2018 Dec; 11(1):145-157. PubMed ID: 30525144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]