These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 28959887)

  • 1. Infrared Black Phosphorus Phototransistor with Tunable Responsivity and Low Noise Equivalent Power.
    Huang L; Tan WC; Wang L; Dong B; Lee C; Ang KW
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36130-36136. PubMed ID: 28959887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Black Phosphorus Carbide Infrared Phototransistor.
    Tan WC; Huang L; Ng RJ; Wang L; Hasan DMN; Duffin TJ; Kumar KS; Nijhuis CA; Lee C; Ang KW
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29266512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayer 2D germanium phosphide (GeP) infrared phototransistor.
    Dushaq G; Rasras M
    Opt Express; 2021 Mar; 29(6):9419-9428. PubMed ID: 33820370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene-Black Phosphorus Heterostructure.
    Liu Y; Shivananju BN; Wang Y; Zhang Y; Yu W; Xiao S; Sun T; Ma W; Mu H; Lin S; Zhang H; Lu Y; Qiu CW; Li S; Bao Q
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36137-36145. PubMed ID: 28948769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waveguide-Integrated Black Phosphorus Photodetector for Mid-Infrared Applications.
    Huang L; Dong B; Guo X; Chang Y; Chen N; Huang X; Liao W; Zhu C; Wang H; Lee C; Ang KW
    ACS Nano; 2019 Jan; 13(1):913-921. PubMed ID: 30586289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air-stable few-layer black phosphorus phototransistor for near-infrared detection.
    Na J; Park K; Kim JT; Choi WK; Song YW
    Nanotechnology; 2017 Feb; 28(8):085201. PubMed ID: 28028247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable black phosphorus heterojunction transistors for multifunctional optoelectronics.
    Wang L; Huang L; Tan WC; Feng X; Chen L; Ang KW
    Nanoscale; 2018 Aug; 10(29):14359-14367. PubMed ID: 30020303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Top-gated black phosphorus phototransistor for sensitive broadband detection.
    Liu C; Wang L; Chen X; Zhou J; Tang W; Guo W; Wang J; Lu W
    Nanoscale; 2018 Mar; 10(13):5852-5858. PubMed ID: 29547222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Responsivity Gate-Tunable Ultraviolet-Visible Broadband Phototransistor Based on Graphene-WS
    Mukherjee S; Bhattacharya D; Patra S; Paul S; Mitra RK; Mahadevan P; Pal AN; Ray SK
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5775-5784. PubMed ID: 35068147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-sensitivity near-infrared phototransistor based on an organic bulk heterojunction.
    Xu H; Li J; Leung BH; Poon CC; Ong BS; Zhang Y; Zhao N
    Nanoscale; 2013 Dec; 5(23):11850-5. PubMed ID: 24126789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Air-Stable Room-Temperature Mid-Infrared Photodetectors Based on hBN/Black Arsenic Phosphorus/hBN Heterostructures.
    Yuan S; Shen C; Deng B; Chen X; Guo Q; Ma Y; Abbas A; Liu B; Haiges R; Ott C; Nilges T; Watanabe K; Taniguchi T; Sinai O; Naveh D; Zhou C; Xia F
    Nano Lett; 2018 May; 18(5):3172-3179. PubMed ID: 29584948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High bandwidth and responsivity mid-infrared graphene photodetector based on a modified metal-dielectric-graphene architecture.
    Jafari B; Soofi H
    Appl Opt; 2019 Aug; 58(23):6280-6287. PubMed ID: 31503771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room temperature GaAsSb single nanowire infrared photodetectors.
    Li Z; Yuan X; Fu L; Peng K; Wang F; Fu X; Caroff P; White TP; Hoe Tan H; Jagadish C
    Nanotechnology; 2015 Nov; 26(44):445202. PubMed ID: 26451616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Black Phosphorus Mid-Infrared Photodetectors with High Gain.
    Guo Q; Pospischil A; Bhuiyan M; Jiang H; Tian H; Farmer D; Deng B; Li C; Han SJ; Wang H; Xia Q; Ma TP; Mueller T; Xia F
    Nano Lett; 2016 Jul; 16(7):4648-55. PubMed ID: 27332146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Infrared Photodetectors Based on MoTe
    Yu W; Li S; Zhang Y; Ma W; Sun T; Yuan J; Fu K; Bao Q
    Small; 2017 Jun; 13(24):. PubMed ID: 28398007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transparent, broadband, flexible, and bifacial-operable photodetectors containing a large-area graphene-gold oxide heterojunction.
    Liu YL; Yu CC; Lin KT; Yang TC; Wang EY; Chen HL; Chen LC; Chen KH
    ACS Nano; 2015 May; 9(5):5093-103. PubMed ID: 25927392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Flexible Ultraviolet (UV) Phototransistor Using Hybrid Channel of Vertical ZnO Nanorods and Graphene.
    Dang VQ; Trung TQ; Duy le T; Kim BY; Siddiqui S; Lee W; Lee NE
    ACS Appl Mater Interfaces; 2015 May; 7(20):11032-40. PubMed ID: 25942324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene photodetectors with ultra-broadband and high responsivity at room temperature.
    Liu CH; Chang YC; Norris TB; Zhong Z
    Nat Nanotechnol; 2014 Apr; 9(4):273-8. PubMed ID: 24633521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation investigation of strained black phosphorus photodetector for middle infrared range.
    Zhang S; Liu Y; Shao Y; Fang C; Han G; Zhang J; Hao Y
    Opt Express; 2017 Oct; 25(20):24705-24713. PubMed ID: 29041416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution-Synthesized High-Mobility Tellurium Nanoflakes for Short-Wave Infrared Photodetectors.
    Amani M; Tan C; Zhang G; Zhao C; Bullock J; Song X; Kim H; Shrestha VR; Gao Y; Crozier KB; Scott M; Javey A
    ACS Nano; 2018 Jul; 12(7):7253-7263. PubMed ID: 29912549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.