BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 28959999)

  • 1. A high areal capacity lithium-sulfur battery cathode prepared by site-selective vapor infiltration of hierarchical carbon nanotube arrays.
    Carter R; Davis B; Oakes L; Maschmann MR; Pint CL
    Nanoscale; 2017 Oct; 9(39):15018-15026. PubMed ID: 28959999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur Vapor-Infiltrated 3D Carbon Nanotube Foam for Binder-Free High Areal Capacity Lithium-Sulfur Battery Composite Cathodes.
    Li M; Carter R; Douglas A; Oakes L; Pint CL
    ACS Nano; 2017 May; 11(5):4877-4884. PubMed ID: 28452494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-Standing Porous Carbon Nanofiber/Carbon Nanotube Film as Sulfur Immobilizer with High Areal Capacity for Lithium-Sulfur Battery.
    Zhang YZ; Zhang Z; Liu S; Li GR; Gao XP
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8749-8757. PubMed ID: 29469561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spherical Macroporous Carbon Nanotube Particles with Ultrahigh Sulfur Loading for Lithium-Sulfur Battery Cathodes.
    Gueon D; Hwang JT; Yang SB; Cho E; Sohn K; Yang DK; Moon JH
    ACS Nano; 2018 Jan; 12(1):226-233. PubMed ID: 29300088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Cathode Materials Enabled by a Multifunctional Covalent Organic Gel for Lithium-Sulfur Batteries with High Areal Capacities.
    Pan H; Cheng Z; Zhong H; Wang R; Li X
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8032-8039. PubMed ID: 30702847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Activation of High-Loading Sulfur by Small CNTs Confined Inside a Large CNT for High-Capacity and High-Rate Lithium-Sulfur Batteries.
    Jin F; Xiao S; Lu L; Wang Y
    Nano Lett; 2016 Jan; 16(1):440-7. PubMed ID: 26675744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of morphological variation in three-dimensional multiwall carbon nanotubes as the host cathode material for high-performance rechargeable lithium-sulfur batteries.
    Adhikari PR; Lee E; Smith L; Kim J; Shi S; Choi W
    RSC Adv; 2023 Mar; 13(14):9402-9412. PubMed ID: 36968032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free-Standing Sulfur-Carbon Nanotube Electrode with a Deposited Sulfur Layer for High-Energy Lithium-Sulfur Batteries.
    Kang J; Jung Y
    J Nanosci Nanotechnol; 2020 Aug; 20(8):5019-5023. PubMed ID: 32126693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium-Sulfur Batteries.
    Chung SH; Chang CH; Manthiram A
    ACS Nano; 2016 Nov; 10(11):10462-10470. PubMed ID: 27783490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polysulfide Anchoring Mechanism Revealed by Atomic Layer Deposition of V
    Carter R; Oakes L; Muralidharan N; Cohn AP; Douglas A; Pint CL
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7185-7192. PubMed ID: 28165213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-Dependent Vapor Infiltration of Sulfur into Highly Porous Hierarchical Three-Dimensional Conductive Carbon Networks for Lithium Ion Battery Applications.
    Cavers H; Krüger H; Polonskyi O; Schütt F; Adelung R; Hansen S
    ACS Omega; 2020 Nov; 5(43):28196-28203. PubMed ID: 33163802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the capacity of lithium-sulfur batteries by tailoring the polysulfide adsorption efficiency of hierarchical oxygen/nitrogen-functionalized carbon host materials.
    Schneider A; Janek J; Brezesinski T
    Phys Chem Chem Phys; 2017 Mar; 19(12):8349-8355. PubMed ID: 28280833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes.
    Song J; Gordin ML; Xu T; Chen S; Yu Z; Sohn H; Lu J; Ren Y; Duan Y; Wang D
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4325-9. PubMed ID: 25663183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward More Reliable Lithium-Sulfur Batteries: An All-Graphene Cathode Structure.
    Fang R; Zhao S; Pei S; Qian X; Hou PX; Cheng HM; Liu C; Li F
    ACS Nano; 2016 Sep; 10(9):8676-82. PubMed ID: 27537348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries.
    Sun L; Kong W; Li M; Wu H; Jiang K; Li Q; Zhang Y; Wang J; Fan S
    Nanotechnology; 2016 Feb; 27(7):075401. PubMed ID: 26778739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes.
    Xu T; Song J; Gordin ML; Sohn H; Yu Z; Chen S; Wang D
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11355-62. PubMed ID: 24090278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale defect engineering of lithium-sulfur battery composite cathodes for improved performance.
    Oakes L; Carter R; Pint CL
    Nanoscale; 2016 Nov; 8(46):19368-19375. PubMed ID: 27845470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Layer Sulfur Cathode with a Conductive Material-Free Middle Layer.
    Kang J; Park JW; Kim S; Jung Y
    J Nanosci Nanotechnol; 2020 Aug; 20(8):4943-4948. PubMed ID: 32126679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet Chemistry Synthesis of Multidimensional Nanocarbon-Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium-Sulfur Batteries.
    Du WC; Yin YX; Zeng XX; Shi JL; Zhang SF; Wan LJ; Guo YG
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3584-90. PubMed ID: 26378622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Aligned and Laminated Nanostructured Carbon Hybrid Cathode for High-Performance Lithium-Sulfur Batteries.
    Sun Q; Fang X; Weng W; Deng J; Chen P; Ren J; Guan G; Wang M; Peng H
    Angew Chem Int Ed Engl; 2015 Sep; 54(36):10539-44. PubMed ID: 26178766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.