These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 28959999)

  • 41. New approaches for high energy density lithium-sulfur battery cathodes.
    Evers S; Nazar LF
    Acc Chem Res; 2013 May; 46(5):1135-43. PubMed ID: 23054430
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries.
    Jin L; Huang X; Zeng G; Wu H; Morbidelli M
    Sci Rep; 2016 Sep; 6():32800. PubMed ID: 27600885
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pie-like electrode design for high-energy density lithium-sulfur batteries.
    Li Z; Zhang JT; Chen YM; Li J; Lou XW
    Nat Commun; 2015 Nov; 6():8850. PubMed ID: 26608228
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lean-electrolyte lithium-sulfur electrochemical cells with high-loading carbon nanotube/nanofiber-polysulfide cathodes.
    Yen YJ; Chung SH
    Chem Commun (Camb); 2021 Feb; 57(16):2009-2012. PubMed ID: 33506818
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-assembled N-graphene nanohollows enabling ultrahigh energy density cathode for Li-S batteries.
    Tang H; Yang J; Zhang G; Liu C; Wang H; Zhao Q; Hu J; Duan Y; Pan F
    Nanoscale; 2017 Dec; 10(1):386-395. PubMed ID: 29218342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomass-Derived Porous Carbon with Micropores and Small Mesopores for High-Performance Lithium-Sulfur Batteries.
    Yang K; Gao Q; Tan Y; Tian W; Qian W; Zhu L; Yang C
    Chemistry; 2016 Mar; 22(10):3239-3244. PubMed ID: 26807663
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synergistic Design of Cathode Region for the High-Energy-Density Li-S Batteries.
    Fan CY; Liu SY; Li HH; Wang HF; Wang HC; Wu XL; Sun HZ; Zhang JP
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28689-28699. PubMed ID: 27731632
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced Li-S Batteries Using Amine-Functionalized Carbon Nanotubes in the Cathode.
    Ma L; Zhuang HL; Wei S; Hendrickson KE; Kim MS; Cohn G; Hennig RG; Archer LA
    ACS Nano; 2016 Jan; 10(1):1050-9. PubMed ID: 26634409
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-Dimensional Porous Graphene Aerogel Cathode with High Sulfur Loading and Embedded TiO
    Huang JQ; Wang Z; Xu ZL; Chong WG; Qin X; Wang X; Kim JK
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28663-28670. PubMed ID: 27715003
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A high-areal-capacity lithium-sulfur cathode achieved by a boron-doped carbon-sulfur aerogel with consecutive core-shell structures.
    Liu Y; Yan Y; Li K; Yu Y; Wang Q; Liu M
    Chem Commun (Camb); 2019 Jan; 55(8):1084-1087. PubMed ID: 30620032
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption.
    Pang Q; Nazar LF
    ACS Nano; 2016 Apr; 10(4):4111-8. PubMed ID: 26841116
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface Chemistry in Cobalt Phosphide-Stabilized Lithium-Sulfur Batteries.
    Zhong Y; Yin L; He P; Liu W; Wu Z; Wang H
    J Am Chem Soc; 2018 Jan; 140(4):1455-1459. PubMed ID: 29309139
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nickel Hydroxide-Modified Sulfur/Carbon Composite as a High-Performance Cathode Material for Lithium Sulfur Battery.
    Niu XQ; Wang XL; Xie D; Wang DH; Zhang YD; Li Y; Yu T; Tu JP
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16715-22. PubMed ID: 26158375
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ternary Hybrid Material for High-Performance Lithium-Sulfur Battery.
    Fan Q; Liu W; Weng Z; Sun Y; Wang H
    J Am Chem Soc; 2015 Oct; 137(40):12946-53. PubMed ID: 26378475
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries.
    Li G; Sun J; Hou W; Jiang S; Huang Y; Geng J
    Nat Commun; 2016 Feb; 7():10601. PubMed ID: 26830732
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mesoporous TiO2 Nanocrystals/Graphene as an Efficient Sulfur Host Material for High-Performance Lithium-Sulfur Batteries.
    Li Y; Cai Q; Wang L; Li Q; Peng X; Gao B; Huo K; Chu PK
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23784-92. PubMed ID: 27552961
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hierarchical nitrogen-doped porous graphene/reduced fluorographene/sulfur hybrids for high-performance lithium-sulfur batteries.
    Liu Z; Li J; Xiang J; Cheng S; Wu H; Zhang N; Yuan L; Zhang W; Xie J; Huang Y; Chang H
    Phys Chem Chem Phys; 2017 Jan; 19(3):2567-2573. PubMed ID: 28059421
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synergistic Ultrathin Functional Polymer-Coated Carbon Nanotube Interlayer for High Performance Lithium-Sulfur Batteries.
    Kim JH; Seo J; Choi J; Shin D; Carter M; Jeon Y; Wang C; Hu L; Paik U
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20092-9. PubMed ID: 27437758
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Lithium-Sulfur Battery using a 2D Current Collector Architecture with a Large-Sized Sulfur Host Operated under High Areal Loading and Low E/S Ratio.
    Li M; Zhang Y; Bai Z; Liu WW; Liu T; Gim J; Jiang G; Yuan Y; Luo D; Feng K; Yassar RS; Wang X; Chen Z; Lu J
    Adv Mater; 2018 Nov; 30(46):e1804271. PubMed ID: 30368935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.