These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28960064)

  • 21. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel.
    Lee SS; Yim Y; Ahn KH; Lee SJ
    Biomed Microdevices; 2009 Oct; 11(5):1021-7. PubMed ID: 19434498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrical impedance microflow cytometry with oxygen control for detection of sickle cells.
    Liu J; Qiang Y; Alvarez O; Du E
    Sens Actuators B Chem; 2018 Feb; 255(Pt 2):2392-2398. PubMed ID: 29731543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic in situ mechanical testing of photopolymerized gels.
    Duprat C; Berthet H; Wexler JS; du Roure O; Lindner A
    Lab Chip; 2015 Jan; 15(1):244-52. PubMed ID: 25360871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of induced-charge electro-osmotic flow in a microchannel embedded with polarizable dielectric blocks.
    Zhao C; Yang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046312. PubMed ID: 19905441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sedimentary microbial oxygen demand for laminar flow over a sediment bed of finite length.
    Higashino M; Stefan HG
    Water Res; 2005 Sep; 39(14):3153-66. PubMed ID: 16054191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Profiling a soft solid layer to passively control the conduit shape in a compliant microchannel during flow.
    Karan P; Chakraborty J; Chakraborty S; Wereley ST; Christov IC
    Phys Rev E; 2021 Jul; 104(1-2):015108. PubMed ID: 34412219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theory of the flow-induced deformation of shallow compliant microchannels with thick walls.
    Wang X; Christov IC
    Proc Math Phys Eng Sci; 2019 Nov; 475(2231):20190513. PubMed ID: 31824223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Streaming potential revisited: the influence of convection on the surface conductivity.
    Saini R; Garg A; Barz DP
    Langmuir; 2014 Sep; 30(36):10950-61. PubMed ID: 25148210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of zeta potential by electrokinetic analysis of ionic fluid flows through a divergent microchannel.
    Chun MS; Lee SY; Yang SM
    J Colloid Interface Sci; 2003 Oct; 266(1):120-6. PubMed ID: 12957590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C; Devoe DL
    Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrokinetic flow through an elliptical microchannel: effects of aspect ratio and electrical boundary conditions.
    Hsu JP; Kao CY; Tseng S; Chen CJ
    J Colloid Interface Sci; 2002 Apr; 248(1):176-84. PubMed ID: 16290520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.
    Liu H; Niinomi M; Nakai M; Hieda J; Cho K
    J Mech Behav Biomed Mater; 2014 Feb; 30():205-13. PubMed ID: 24317494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the surface conductance, flow rate, and current continuities of microfluidics with nonuniform surface potentials.
    Tian F; Kwok DY
    Langmuir; 2005 Mar; 21(6):2192-8. PubMed ID: 15752006
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Motion of an elastic capsule in a constricted microchannel.
    Rorai C; Touchard A; Zhu L; Brandt L
    Eur Phys J E Soft Matter; 2015 May; 38(5):134. PubMed ID: 26002531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.
    Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH
    J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pressure drop of slug flow in microchannels with increasing void fraction: experiment and modeling.
    Molla S; Eskin D; Mostowfi F
    Lab Chip; 2011 Jun; 11(11):1968-78. PubMed ID: 21512682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuning the hydraulic resistance by swelling-induced buckling of membranes in high-aspect-ratio microfluidic devices.
    Stamp CH; Solomon B; Lang F; Mitropoulos E; Pfohl T
    Lab Chip; 2023 Aug; 23(16):3662-3670. PubMed ID: 37458247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rollable Microfluidic Systems with Microscale Bending Radius and Tuning of Device Function with Reconfigurable 3D Channel Geometry.
    Kim J; You JB; Nam SM; Seo S; Im SG; Lee W
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11156-11166. PubMed ID: 28267308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.