These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28960073)

  • 21. A method to quantify quinone reaction rates with wine relevant nucleophiles: a key to the understanding of oxidative loss of varietal thiols.
    Nikolantonaki M; Waterhouse AL
    J Agric Food Chem; 2012 Aug; 60(34):8484-91. PubMed ID: 22860891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of 3-mercaptohexanol, hydrogen sulfide, and methyl mercaptan during bottle storage of Sauvignon blanc wines. Effect of glutathione, copper, oxygen exposure, and closure-derived oxygen.
    Ugliano M; Kwiatkowski M; Vidal S; Capone D; Siebert T; Dieval JB; Aagaard O; Waters EJ
    J Agric Food Chem; 2011 Mar; 59(6):2564-72. PubMed ID: 21332202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogen sulfide production during yeast fermentation causes the accumulation of ethanethiol, S-ethyl thioacetate and diethyl disulfide.
    Kinzurik MI; Herbst-Johnstone M; Gardner RC; Fedrizzi B
    Food Chem; 2016 Oct; 209():341-7. PubMed ID: 27173572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of Elemental Sulfur in Forming Latent Precursors of H
    Jastrzembski JA; Allison RB; Friedberg E; Sacks GL
    J Agric Food Chem; 2017 Dec; 65(48):10542-10549. PubMed ID: 29129055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxygen consumption and development of volatile sulfur compounds during bottle aging of two Shiraz wines. Influence of pre- and postbottling controlled oxygen exposure.
    Ugliano M; Dieval JB; Siebert TE; Kwiatkowski M; Aagaard O; Vidal S; Waters EJ
    J Agric Food Chem; 2012 Sep; 60(35):8561-70. PubMed ID: 22900817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and characterisation of thiolated polysulfides in must and wine using online SPE UHPLC-HRMS.
    Dekker S; Nardin T; Mattana M; Fochi I; Larcher R
    Anal Bioanal Chem; 2020 Sep; 412(22):5229-5245. PubMed ID: 32588110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Key changes in wine aroma active compounds during bottle storage of Spanish red wines under different oxygen levels.
    Ferreira V; Bueno M; Franco-Luesma E; Culleré L; Fernández-Zurbano P
    J Agric Food Chem; 2014 Oct; 62(41):10015-27. PubMed ID: 25284059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological chemistry of hydrogen sulfide and persulfides.
    Cuevasanta E; Möller MN; Alvarez B
    Arch Biochem Biophys; 2017 Mar; 617():9-25. PubMed ID: 27697462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways.
    Mishanina TV; Libiad M; Banerjee R
    Nat Chem Biol; 2015 Jul; 11(7):457-64. PubMed ID: 26083070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of methanethiol on the biological oxidation of sulfide at natron-alkaline conditions.
    van den Bosch PL; Fortuny-Picornell M; Janssen AJ
    Environ Sci Technol; 2009 Jan; 43(2):453-9. PubMed ID: 19238979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of clay aggregate biotrickling filters for treatment of gaseous emissions from intensive pig production.
    Liu D; Løkke MM; Riis AL; Mortensen K; Feilberg A
    J Environ Manage; 2014 Apr; 136():1-8. PubMed ID: 24534901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polysulfides link H2S to protein thiol oxidation.
    Greiner R; Pálinkás Z; Bäsell K; Becher D; Antelmann H; Nagy P; Dick TP
    Antioxid Redox Signal; 2013 Nov; 19(15):1749-65. PubMed ID: 23646934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational Study of H
    Cai YR; Hu CH
    J Phys Chem B; 2017 Jul; 121(26):6359-6366. PubMed ID: 28609097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time assays for monitoring the influence of sulfide and sulfane sulfur species on protein thiol redox states.
    Greiner R; Dick TP
    Methods Enzymol; 2015; 555():57-77. PubMed ID: 25747475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding hydrogen sulfide storage: probing conditions for sulfide release from hydrodisulfides.
    Bailey TS; Zakharov LN; Pluth MD
    J Am Chem Soc; 2014 Jul; 136(30):10573-6. PubMed ID: 25010540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of methanethiol on biological sulphide oxidation in gas treatment system.
    Roman P; Bijmans MF; Janssen AJ
    Environ Technol; 2016; 37(13):1693-703. PubMed ID: 26652658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Possible Reduction Mechanism of Volatile Sulfur Compounds during Durian Wine Fermentation Verified in Modified Buffers.
    Lu Y; Fong ASYL; Chua JY; Huang D; Lee PR; Liu SQ
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29914098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of the effect of H
    Franco-Luesma E; Sáenz-Navajas MP; Valentin D; Ballester J; Rodrigues H; Ferreira V
    Food Res Int; 2016 Sep; 87():152-160. PubMed ID: 29606236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices.
    Tangerman A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(28):3366-77. PubMed ID: 19505855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of nitrogen supplementation and Saccharomyces species on hydrogen sulfide and other volatile sulfur compounds in shiraz fermentation and wine.
    Ugliano M; Fedrizzi B; Siebert T; Travis B; Magno F; Versini G; Henschke PA
    J Agric Food Chem; 2009 Jun; 57(11):4948-55. PubMed ID: 19391591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.