These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28960081)

  • 1. Systematic Proteogenomic Approach To Exploring a Novel Function for NHERF1 in Human Reproductive Disorder: Lessons for Exploring Missing Proteins.
    Na K; Shin H; Cho JY; Jung SH; Lim J; Lim JS; Kim EA; Kim HS; Kang AR; Kim JH; Shin JM; Jeong SK; Kim CY; Park JY; Chung HM; Omenn GS; Hancock WS; Paik YK
    J Proteome Res; 2017 Dec; 16(12):4455-4467. PubMed ID: 28960081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated Proteomic Pipeline Using Multiple Search Engines for a Proteogenomic Study with a Controlled Protein False Discovery Rate.
    Park GW; Hwang H; Kim KH; Lee JY; Lee HK; Park JY; Ji ES; Park SR; Yates JR; Kwon KH; Park YM; Lee HJ; Paik YK; Kim JY; Yoo JS
    J Proteome Res; 2016 Nov; 15(11):4082-4090. PubMed ID: 27537616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteogenomics in the context of the Human Proteome Project (HPP).
    González-Gomariz J; Guruceaga E; López-Sánchez M; Segura V
    Expert Rev Proteomics; 2019 Mar; 16(3):267-275. PubMed ID: 30654666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Launching the C-HPP neXt-CP50 Pilot Project for Functional Characterization of Identified Proteins with No Known Function.
    Paik YK; Lane L; Kawamura T; Chen YJ; Cho JY; LaBaer J; Yoo JS; Domont G; Corrales F; Omenn GS; Archakov A; Encarnación-Guevara S; Lui S; Salekdeh GH; Cho JY; Kim CY; Overall CM
    J Proteome Res; 2018 Dec; 17(12):4042-4050. PubMed ID: 30269496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical stabilization of beta-catenin contributes to NHERF1/EBP50 tumor suppressor function.
    Kreimann EL; Morales FC; de Orbeta-Cruz J; Takahashi Y; Adams H; Liu TJ; McCrea PD; Georgescu MM
    Oncogene; 2007 Aug; 26(36):5290-9. PubMed ID: 17325659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bridging the Chromosome-centric and Biology/Disease-driven Human Proteome Projects: Accessible and Automated Tools for Interpreting the Biological and Pathological Impact of Protein Sequence Variants Detected via Proteogenomics.
    Sajulga R; Mehta S; Kumar P; Johnson JE; Guerrero CR; Ryan MC; Karchin R; Jagtap PD; Griffin TJ
    J Proteome Res; 2018 Dec; 17(12):4329-4336. PubMed ID: 30130115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GenomewidePDB 2.0: A Newly Upgraded Versatile Proteogenomic Database for the Chromosome-Centric Human Proteome Project.
    Jeong SK; Hancock WS; Paik YK
    J Proteome Res; 2015 Sep; 14(9):3710-9. PubMed ID: 26272709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chromosome-centric human proteome project (C-HPP) to characterize the sets of proteins encoded in chromosome 17.
    Liu S; Im H; Bairoch A; Cristofanilli M; Chen R; Deutsch EW; Dalton S; Fenyo D; Fanayan S; Gates C; Gaudet P; Hincapie M; Hanash S; Kim H; Jeong SK; Lundberg E; Mias G; Menon R; Mu Z; Nice E; Paik YK; Uhlen M; Wells L; Wu SL; Yan F; Zhang F; Zhang Y; Snyder M; Omenn GS; Beavis RC; Hancock WS
    J Proteome Res; 2013 Jan; 12(1):45-57. PubMed ID: 23259914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project.
    Shiromizu T; Adachi J; Watanabe S; Murakami T; Kuga T; Muraoka S; Tomonaga T
    J Proteome Res; 2013 Jun; 12(6):2414-21. PubMed ID: 23312004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GenomewidePDB, a proteomic database exploring the comprehensive protein parts list and transcriptome landscape in human chromosomes.
    Jeong SK; Lee HJ; Na K; Cho JY; Lee MJ; Kwon JY; Kim H; Park YM; Yoo JS; Hancock WS; Paik YK
    J Proteome Res; 2013 Jan; 12(1):106-11. PubMed ID: 23252913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. neXtProt: organizing protein knowledge in the context of human proteome projects.
    Gaudet P; Argoud-Puy G; Cusin I; Duek P; Evalet O; Gateau A; Gleizes A; Pereira M; Zahn-Zabal M; Zwahlen C; Bairoch A; Lane L
    J Proteome Res; 2013 Jan; 12(1):293-8. PubMed ID: 23205526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on the Human Proteome Reaches a Major Milestone: >90% of Predicted Human Proteins Now Credibly Detected, According to the HUPO Human Proteome Project.
    Omenn GS; Lane L; Overall CM; Cristea IM; Corrales FJ; Lindskog C; Paik YK; Van Eyk JE; Liu S; Pennington SR; Snyder MP; Baker MS; Bandeira N; Aebersold R; Moritz RL; Deutsch EW
    J Proteome Res; 2020 Dec; 19(12):4735-4746. PubMed ID: 32931287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+-H+ exchanger regulatory factor 1 (NHERF1) PDZ scaffold binds an internal binding site in the scavenger receptor megalin.
    Slattery C; Jenkin KA; Lee A; Simcocks AC; McAinch AJ; Poronnik P; Hryciw DH
    Cell Physiol Biochem; 2011; 27(2):171-8. PubMed ID: 21325834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteogenomic Analysis to Identify Missing Proteins from Haploid Cell Lines.
    Lee SE; Song J; Bösl K; Müller AC; Vitko D; Bennett KL; Superti-Furga G; Pandey A; Kandasamy RK; Kim MS
    Proteomics; 2018 Apr; 18(8):e1700386. PubMed ID: 29474001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of Multiple Spectral Libraries Improves the Current Search Methods Used to Identify Missing Proteins in the Chromosome-Centric Human Proteome Project.
    Cho JY; Lee HJ; Jeong SK; Kim KY; Kwon KH; Yoo JS; Omenn GS; Baker MS; Hancock WS; Paik YK
    J Proteome Res; 2015 Dec; 14(12):4959-66. PubMed ID: 26330117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress on Identifying and Characterizing the Human Proteome: 2019 Metrics from the HUPO Human Proteome Project.
    Omenn GS; Lane L; Overall CM; Corrales FJ; Schwenk JM; Paik YK; Van Eyk JE; Liu S; Pennington S; Snyder MP; Baker MS; Deutsch EW
    J Proteome Res; 2019 Dec; 18(12):4098-4107. PubMed ID: 31430157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ASV-ID, a Proteogenomic Workflow To Predict Candidate Protein Isoforms on the Basis of Transcript Evidence.
    Jeong SK; Kim CY; Paik YK
    J Proteome Res; 2018 Dec; 17(12):4235-4242. PubMed ID: 30289715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint.
    Loureiro CA; Matos AM; Dias-Alves Â; Pereira JF; Uliyakina I; Barros P; Amaral MD; Matos P
    Sci Signal; 2015 May; 8(377):ra48. PubMed ID: 25990958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the Chromosome-Centric Human Proteome Project: looking to the future.
    Paik YK; Omenn GS; Hancock WS; Lane L; Overall CM
    Expert Rev Proteomics; 2017 Dec; 14(12):1059-1071. PubMed ID: 29039980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Data Analysis Pipeline for High-Confidence Proteogenomics.
    Weisser H; Wright JC; Mudge JM; Gutenbrunner P; Choudhary JS
    J Proteome Res; 2016 Dec; 15(12):4686-4695. PubMed ID: 27786492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.