These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 28960239)
1. Estimation and evaluation of linear individualized treatment rules to guarantee performance. Qiu X; Zeng D; Wang Y Biometrics; 2018 Jun; 74(2):517-528. PubMed ID: 28960239 [TBL] [Abstract][Full Text] [Related]
2. Composite interaction tree for simultaneous learning of optimal individualized treatment rules and subgroups. Qiu X; Wang Y Stat Med; 2019 Jun; 38(14):2632-2651. PubMed ID: 30891797 [TBL] [Abstract][Full Text] [Related]
3. Estimating optimal shared-parameter dynamic regimens with application to a multistage depression clinical trial. Chakraborty B; Ghosh P; Moodie EE; Rush AJ Biometrics; 2016 Sep; 72(3):865-76. PubMed ID: 26890628 [TBL] [Abstract][Full Text] [Related]
4. Inference for optimal dynamic treatment regimes using an adaptive m-out-of-n bootstrap scheme. Chakraborty B; Laber EB; Zhao Y Biometrics; 2013 Sep; 69(3):714-23. PubMed ID: 23845276 [TBL] [Abstract][Full Text] [Related]
5. Treatment decisions based on scalar and functional baseline covariates. Ciarleglio A; Petkova E; Ogden RT; Tarpey T Biometrics; 2015 Dec; 71(4):884-94. PubMed ID: 26111145 [TBL] [Abstract][Full Text] [Related]
6. Robust outcome weighted learning for optimal individualized treatment rules. Fu S; He Q; Zhang S; Liu Y J Biopharm Stat; 2019; 29(4):606-624. PubMed ID: 31309858 [TBL] [Abstract][Full Text] [Related]
7. Self-matched learning to construct treatment decision rulesĀ from electronic health records. Xu T; Chen Y; Zeng D; Wang Y Stat Med; 2022 Jul; 41(17):3434-3447. PubMed ID: 35511090 [TBL] [Abstract][Full Text] [Related]
8. Statistical learning of origin-specific statically optimal individualized treatment rules. van der Laan MJ; Petersen ML Int J Biostat; 2007; 3(1):Article 6. PubMed ID: 19122792 [TBL] [Abstract][Full Text] [Related]
9. Stabilized direct learning for efficient estimation of individualized treatment rules. Shah KS; Fu H; Kosorok MR Biometrics; 2023 Dec; 79(4):2843-2856. PubMed ID: 36585916 [TBL] [Abstract][Full Text] [Related]
10. Measuring the individualization potential of treatment individualization rules: Application to rules built with a new parametric interaction model for parallel-group clinical trials. Diaz FJ Stat Methods Med Res; 2024 Aug; 33(8):1355-1375. PubMed ID: 39105416 [TBL] [Abstract][Full Text] [Related]
11. Residual Weighted Learning for Estimating Individualized Treatment Rules. Zhou X; Mayer-Hamblett N; Khan U; Kosorok MR J Am Stat Assoc; 2017; 112(517):169-187. PubMed ID: 28943682 [TBL] [Abstract][Full Text] [Related]
12. Estimating individualized treatment rules for ordinal treatments. Chen J; Fu H; He X; Kosorok MR; Liu Y Biometrics; 2018 Sep; 74(3):924-933. PubMed ID: 29534296 [TBL] [Abstract][Full Text] [Related]
13. Incorporating Patient Preferences into Estimation of Optimal Individualized Treatment Rules. Butler EL; Laber EB; Davis SM; Kosorok MR Biometrics; 2018 Mar; 74(1):18-26. PubMed ID: 28742260 [TBL] [Abstract][Full Text] [Related]
14. Estimating individualized optimal combination therapies through outcome weighted deep learning algorithms. Liang M; Ye T; Fu H Stat Med; 2018 Nov; 37(27):3869-3886. PubMed ID: 30014497 [TBL] [Abstract][Full Text] [Related]
15. Estimating personalized diagnostic rules depending on individualized characteristics. Liu Y; Wang Y; Huang C; Zeng D Stat Med; 2017 Mar; 36(7):1099-1117. PubMed ID: 27917508 [TBL] [Abstract][Full Text] [Related]