These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28960246)

  • 1. Clustering distributions with the marginalized nested Dirichlet process.
    Zuanetti DA; Müller P; Zhu Y; Yang S; Ji Y
    Biometrics; 2018 Jun; 74(2):584-594. PubMed ID: 28960246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Nonparametric Bayesian Model for Nested Clustering.
    Lee J; Müller P; Zhu Y; Ji Y
    Methods Mol Biol; 2016; 1362():129-41. PubMed ID: 26519174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axially Symmetric Data Clustering Through Dirichlet Process Mixture Models of Watson Distributions.
    Fan W; Bouguila N; Du JX; Liu X
    IEEE Trans Neural Netw Learn Syst; 2019 Jun; 30(6):1683-1694. PubMed ID: 30369452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data.
    Chen SP; Huang GH
    Stat Appl Genet Mol Biol; 2014 Jun; 13(3):275-97. PubMed ID: 24846958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Dirichlet process mixture model for clustering longitudinal gene expression data.
    Sun J; Herazo-Maya JD; Kaminski N; Zhao H; Warren JL
    Stat Med; 2017 Sep; 36(22):3495-3506. PubMed ID: 28620908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling.
    Bouguila N; Ziou D
    IEEE Trans Neural Netw; 2010 Jan; 21(1):107-22. PubMed ID: 19963696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Nonparametric Bayesian Model for Local Clustering with Application to Proteomics.
    Lee J; Müller P; Zhu Y; Ji Y
    J Am Stat Assoc; 2013 Jan; 108(503):. PubMed ID: 24222928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Dirichlet model of alignment cost in mixed-membership unsupervised clustering.
    Liu X; Kopelman NM; Rosenberg NA
    J Comput Graph Stat; 2023; 32(3):1145-1159. PubMed ID: 37982130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clustering of change patterns using Fourier coefficients.
    Kim J; Kim H
    Bioinformatics; 2008 Jan; 24(2):184-91. PubMed ID: 18025003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nested joint clustering via Dirichlet process mixture model.
    Han S; Zhang H; Sheng W; Arshad H
    J Stat Comput Simul; 2019; 89(5):815-830. PubMed ID: 32981982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meta-analysis using Dirichlet process.
    Muthukumarana S; Tiwari RC
    Stat Methods Med Res; 2016 Feb; 25(1):352-65. PubMed ID: 22802045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online Learning of Hierarchical Pitman-Yor Process Mixture of Generalized Dirichlet Distributions With Feature Selection.
    Fan W; Sallay H; Bouguila N
    IEEE Trans Neural Netw Learn Syst; 2017 Sep; 28(9):2048-2061. PubMed ID: 27305687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knowledge-assisted recognition of cluster boundaries in gene expression data.
    Okada Y; Sahara T; Mitsubayashi H; Ohgiya S; Nagashima T
    Artif Intell Med; 2005; 35(1-2):171-83. PubMed ID: 16054350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variational Bayesian Learning for Dirichlet Process Mixture of Inverted Dirichlet Distributions in Non-Gaussian Image Feature Modeling.
    Ma Z; Lai Y; Kleijn WB; Song YZ; Wang L; Guo J
    IEEE Trans Neural Netw Learn Syst; 2019 Feb; 30(2):449-463. PubMed ID: 29994731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Text mining biomedical literature for discovering gene-to-gene relationships: a comparative study of algorithms.
    Liu Y; Navathe SB; Civera J; Dasigi V; Ram A; Ciliax BJ; Dingledine R
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(1):62-76. PubMed ID: 17044165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian semiparametric factor analysis model for subtype identification.
    Sun J; Warren JL; Zhao H
    Stat Appl Genet Mol Biol; 2017 Apr; 16(2):145-158. PubMed ID: 28343169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sparse Count Data Clustering Using an Exponential Approximation to Generalized Dirichlet Multinomial Distributions.
    Zamzami N; Bouguila N
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):89-102. PubMed ID: 33079676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zodiac: A Comprehensive Depiction of Genetic Interactions in Cancer by Integrating TCGA Data.
    Zhu Y; Xu Y; Helseth DL; Gulukota K; Yang S; Pesce LL; Mitra R; Müller P; Sengupta S; Guo W; Silverstein JC; Foster I; Parsad N; White KP; Ji Y
    J Natl Cancer Inst; 2015 Aug; 107(8):. PubMed ID: 25956356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Common Atoms Model for the Bayesian Nonparametric Analysis of Nested Data.
    Denti F; Camerlenghi F; Guindani M; Mira A
    J Am Stat Assoc; 2023; 118(541):405-416. PubMed ID: 37089274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and visualizing uncertainty in gene expression clusters using dirichlet process mixtures.
    Rasmussen CE; de la Cruz BJ; Ghahramani Z; Wild DL
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(4):615-28. PubMed ID: 19875860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.