These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28960712)

  • 1. A High-Throughput Mass-Spectrometry-Based Assay for Identifying the Biochemical Functions of Putative Glycosidases.
    Peng T; Nagy G; Trinidad JC; Jackson JM; Pohl NLB
    Chembiochem; 2017 Dec; 18(23):2306-2311. PubMed ID: 28960712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid screening of the aglycone specificity of glycosidases: applications to enzymatic synthesis of oligosaccharides.
    Blanchard JE; Withers SG
    Chem Biol; 2001 Jul; 8(7):627-33. PubMed ID: 11451664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scope and limitations of carbohydrate hydrolysis for de novo glycan sequencing using a hydrogen peroxide/metallopeptide-based glycosidase mimetic.
    Peng T; Wooke Z; Pohl NLB
    Carbohydr Res; 2018 Mar; 458-459():85-88. PubMed ID: 29475194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of azido-deoxy and amino-deoxy glycosides and glycosyl fluorides for screening of glycosidase libraries and assembly of substituted glycosides.
    Chen HM; Withers SG
    Carbohydr Res; 2018 Sep; 467():33-44. PubMed ID: 30075363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycosidases: a key to tailored carbohydrates.
    Bojarová P; Kren V
    Trends Biotechnol; 2009 Apr; 27(4):199-209. PubMed ID: 19250692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria.
    Bertoldo C; Antranikian G
    Curr Opin Chem Biol; 2002 Apr; 6(2):151-60. PubMed ID: 12038998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of the chemical function of glycosidases: design, synthesis, and evaluation of mass-differentiated carbohydrate libraries.
    Yu Y; Ko KS; Zea CJ; Pohl NL
    Org Lett; 2004 Jun; 6(12):2031-3. PubMed ID: 15176811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational analyses of the reaction coordinate of glycosidases.
    Davies GJ; Planas A; Rovira C
    Acc Chem Res; 2012 Feb; 45(2):308-16. PubMed ID: 21923088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of 2,4-dinitrophenyl alpha-D-glycopyranosides as chromogenic substrates for alpha-glycosidases.
    Chen HM; Withers SG
    Chembiochem; 2007 May; 8(7):719-22. PubMed ID: 17373018
    [No Abstract]   [Full Text] [Related]  

  • 10. High-Throughput Label-Free Biochemical Assays Using Infrared Matrix-Assisted Desorption Electrospray Ionization Mass Spectrometry.
    Pu F; Radosevich AJ; Sawicki JW; Chang-Yen D; Talaty NN; Gopalakrishnan SM; Williams JD; Elsen NL
    Anal Chem; 2021 May; 93(17):6792-6800. PubMed ID: 33885291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of substrate specificity in family 1 glycoside hydrolases.
    Marana SR
    IUBMB Life; 2006 Feb; 58(2):63-73. PubMed ID: 16611572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exchange of active site residues alters substrate specificity in extremely thermostable β-glycosidase from Thermococcus kodakarensis KOD1.
    Hwa KY; Subramani B; Shen ST; Lee YM
    Enzyme Microb Technol; 2015 Sep; 77():14-20. PubMed ID: 26138395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of glycosyl fluorides in the study on glycosidases].
    Lu LL; Xiao M; Zhao H; Wang P; Qian XM
    Sheng Wu Gong Cheng Xue Bao; 2006 May; 22(3):351-60. PubMed ID: 16755910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trapping of alpha-glycosidase intermediates.
    Mosi RM; Withers SG
    Methods Enzymol; 2002; 354():64-84. PubMed ID: 12418217
    [No Abstract]   [Full Text] [Related]  

  • 15. Fullerene-sp2-iminosugar balls as multimodal ligands for lectins and glycosidases: a mechanistic hypothesis for the inhibitory multivalent effect.
    Rísquez-Cuadro R; García Fernández JM; Nierengarten JF; Ortiz Mellet C
    Chemistry; 2013 Dec; 19(49):16791-803. PubMed ID: 24150869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusually broad substrate tolerance of a heat-stable archaeal sugar nucleotidyltransferase for the synthesis of sugar nucleotides.
    Mizanur RM; Zea CJ; Pohl NL
    J Am Chem Soc; 2004 Dec; 126(49):15993-8. PubMed ID: 15584733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between thermostability and stability of glycosidases in ionic liquid.
    Ferdjani S; Ionita M; Roy B; Dion M; Djeghaba Z; Rabiller C; Tellier C
    Biotechnol Lett; 2011 Jun; 33(6):1215-9. PubMed ID: 21331585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Label-Free Enzymatic Assays Using Desorption Electrospray-Ionization Mass Spectrometry.
    Morato NM; Holden DT; Cooks RG
    Angew Chem Int Ed Engl; 2020 Nov; 59(46):20459-20464. PubMed ID: 32735371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General Label-Free Mass Spectrometry-Based Assay To Identify Glycosidase Substrate Competence.
    Nagy G; Peng T; Pohl NL
    Anal Chem; 2016 Jul; 88(14):7183-90. PubMed ID: 27351451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and biochemical characterization of a multifunctional glycosidase from the thermophilic Bacillus licheniformis SR01.
    Wei YD; Li Y; Deng C; Wu SH; Huang CJ; Yi Y
    J Gen Appl Microbiol; 2017 Nov; 63(5):259-265. PubMed ID: 28835594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.