These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 28960886)
1. A preliminary in vitro evaluation of the bioactive potential of cryogel scaffolds incorporated with Manuka honey for the treatment of chronic bone infections. Hixon KR; Lu T; Carletta MN; McBride-Gagyi SH; Janowiak BE; Sell SA J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1918-1933. PubMed ID: 28960886 [TBL] [Abstract][Full Text] [Related]
2. Bioactive impact of manuka honey and bone char incorporated into gelatin and chitosan cryogels in a rat calvarial fracture model. Robertson EM; Hixon KR; McBride-Gagyi SH; Sell SA J Biomed Mater Res B Appl Biomater; 2023 Oct; 111(10):1763-1774. PubMed ID: 37243397 [TBL] [Abstract][Full Text] [Related]
4. Investigating Manuka Honey Antibacterial Properties When Incorporated into Cryogel, Hydrogel, and Electrospun Tissue Engineering Scaffolds. Hixon KR; Bogner SJ; Ronning-Arnesen G; Janowiak BE; Sell SA Gels; 2019 Apr; 5(2):. PubMed ID: 31003516 [TBL] [Abstract][Full Text] [Related]
5. A Comparison of Tissue Engineering Scaffolds Incorporated with Manuka Honey of Varying UMF. Hixon KR; Lu T; McBride-Gagyi SH; Janowiak BE; Sell SA Biomed Res Int; 2017; 2017():4843065. PubMed ID: 28326322 [No Abstract] [Full Text] [Related]
6. Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects. Hixon KR; Melvin AM; Lin AY; Hall AF; Sell SA J Biomater Appl; 2017 Nov; 32(5):598-611. PubMed ID: 28980856 [TBL] [Abstract][Full Text] [Related]
7. Preliminary investigation of honey-doped electrospun scaffolds to delay wound closure. Hilliard G; DeClue CE; Minden-Birkenmaier BA; Dunn AJ; Sell SA; Shornick LP J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2620-2628. PubMed ID: 30866161 [TBL] [Abstract][Full Text] [Related]
8. The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration. Hixon KR; Eberlin CT; Lu T; Neal SM; Case ND; McBride-Gagyi SH; Sell SA Biomed Mater; 2017 Mar; 12(2):025005. PubMed ID: 28145891 [TBL] [Abstract][Full Text] [Related]
9. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
11. Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration. Raina DB; Isaksson H; Teotia AK; Lidgren L; Tägil M; Kumar A J Control Release; 2016 Aug; 235():365-378. PubMed ID: 27252151 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of bacterial attachment on mineralized collagen scaffolds and addition of manuka honey to increase mesenchymal stem cell osteogenesis. Dewey MJ; Collins AJ; Tiffany A; Barnhouse VR; Lu C; Kolliopoulos V; Mutreja I; Hickok NJ; Harley BAC Biomaterials; 2023 Mar; 294():122015. PubMed ID: 36701999 [TBL] [Abstract][Full Text] [Related]
13. Design of gelatin cryogel scaffolds with the ability to release simvastatin for potential bone tissue engineering applications. Yaman SM; Demir D; Bölgen N Biomed Mater; 2024 Jul; 19(5):. PubMed ID: 39025109 [TBL] [Abstract][Full Text] [Related]
15. A comprehensive review of cryogels and their roles in tissue engineering applications. Hixon KR; Lu T; Sell SA Acta Biomater; 2017 Oct; 62():29-41. PubMed ID: 28851666 [TBL] [Abstract][Full Text] [Related]
16. The fabrication of cryogel scaffolds incorporated with poloxamer 407 for potential use in the regeneration of the nucleus pulposus. Temofeew NA; Hixon KR; McBride-Gagyi SH; Sell SA J Mater Sci Mater Med; 2017 Mar; 28(3):36. PubMed ID: 28144848 [TBL] [Abstract][Full Text] [Related]
17. Evaluating potential of tissue-engineered cryogels and chondrocyte derived exosomes in articular cartilage repair. Nikhil A; Kumar A Biotechnol Bioeng; 2022 Feb; 119(2):605-625. PubMed ID: 34723385 [TBL] [Abstract][Full Text] [Related]
18. Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration. Gu L; Zhang J; Li L; Du Z; Cai Q; Yang X Biomed Mater; 2019 Apr; 14(4):045001. PubMed ID: 30939454 [TBL] [Abstract][Full Text] [Related]
19. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration. Maleki H; Shahbazi MA; Montes S; Hosseini SH; Eskandari MR; Zaunschirm S; Verwanger T; Mathur S; Milow B; Krammer B; Hüsing N ACS Appl Mater Interfaces; 2019 May; 11(19):17256-17269. PubMed ID: 31013056 [TBL] [Abstract][Full Text] [Related]
20. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. Bölgen N; Yang Y; Korkusuz P; Güzel E; El Haj AJ; Pişkin E J Tissue Eng Regen Med; 2011 Nov; 5(10):770-9. PubMed ID: 22002920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]