BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28960950)

  • 1. Dynamic Behavior of Metal Nanoparticles in Pd/C and Pt/C Catalytic Systems under Microwave and Conventional Heating.
    Pentsak EO; Cherepanova VA; Ananikov VP
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36723-36732. PubMed ID: 28960950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-Flow Suzuki-Miyaura and Mizoroki-Heck Reactions under Microwave Heating Conditions.
    Monguchi Y; Ichikawa T; Yamada T; Sawama Y; Sajiki H
    Chem Rec; 2019 Jan; 19(1):3-14. PubMed ID: 30182484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Study of the Behavior of Different Metal and Metal-Containing Particles under the Microwave Irradiation and Transformation of Nanoscale and Microscale Morphology.
    Pentsak EO; Cherepanova VA; Sinayskiy MA; Samokhin AV; Ananikov VP
    Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30586910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-assisted cross-coupling and hydrogenation chemistry by using heterogeneous transition-metal catalysts: an evaluation of the role of selective catalyst heating.
    Irfan M; Fuchs M; Glasnov TN; Kappe CO
    Chemistry; 2009 Nov; 15(43):11608-18. PubMed ID: 19774573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.
    Deraedt C; Astruc D
    Acc Chem Res; 2014 Feb; 47(2):494-503. PubMed ID: 24215156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous versus homogeneous palladium catalysts for ligandless mizoroki-heck reactions: a comparison of batch/microwave and continuous-flow processing.
    Glasnov TN; Findenig S; Kappe CO
    Chemistry; 2009; 15(4):1001-10. PubMed ID: 19086042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.
    Song H
    Acc Chem Res; 2015 Mar; 48(3):491-9. PubMed ID: 25730414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instantaneous formation of metal and metal oxide nanoparticles on carbon nanotubes and graphene via solvent-free microwave heating.
    Lin Y; Baggett DW; Kim JW; Siochi EJ; Connell JW
    ACS Appl Mater Interfaces; 2011 May; 3(5):1652-64. PubMed ID: 21517032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable Preparation of the Chemically Ordered Pt-Fe-Au Nanocatalysts with High Catalytic Reactivity and Stability for Oxygen Reduction Reactions.
    Zhu H; Cai Y; Wang F; Gao P; Cao J
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22156-22166. PubMed ID: 29882641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction.
    Perini L; Durante C; Favaro M; Perazzolo V; Agnoli S; Schneider O; Granozzi G; Gennaro A
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1170-9. PubMed ID: 25525718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions.
    Wang C; Ciganda R; Salmon L; Gregurec D; Irigoyen J; Moya S; Ruiz J; Astruc D
    Angew Chem Int Ed Engl; 2016 Feb; 55(9):3091-5. PubMed ID: 26822288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.
    Dahal N; García S; Zhou J; Humphrey SM
    ACS Nano; 2012 Nov; 6(11):9433-46. PubMed ID: 23033897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early-late, mixed-metal compounds supported by amidophosphine ligands.
    Mokuolu QF; Duckmanton PA; Hitchcock PB; Wilson C; Blake AJ; Shukla L; Love JB
    Dalton Trans; 2004 Jul; (13):1960-70. PubMed ID: 15252583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization and microwave-promoted catalytic activity of novel N-phenylbenzimidazolium salts in Heck-Mizoroki and Suzuki-Miyaura cross-coupling reactions under mild conditions.
    Yılmaz Ü; Küçükbay H; Deniz S; Şireci N
    Molecules; 2013 Feb; 18(3):2501-17. PubMed ID: 23439565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pt nanocatalysts supported on reduced graphene oxide for selective conversion of cellulose or cellobiose to sorbitol.
    Wang D; Niu W; Tan M; Wu M; Zheng X; Li Y; Tsubaki N
    ChemSusChem; 2014 May; 7(5):1398-406. PubMed ID: 24648252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in noble metal nanocatalysts for Suzuki and Heck cross-coupling reactions.
    Narayanan R
    Molecules; 2010 Mar; 15(4):2124-38. PubMed ID: 20428032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palladium-Loaded Cucurbit[7]uril-Modified Iron Oxide Nanoparticles for C-C Cross-Coupling Reactions.
    Benyettou F; Motte L; Traboulsi H; Mazher J; Pasricha R; Olsen JC; Trabolsi A; Guenin E
    Chemistry; 2018 Feb; 24(10):2349-2353. PubMed ID: 29297954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to Make a Cocktail of Palladium Catalysts with Cola and Alcohol: Heteroatom Doping vs. Nanoscale Morphology of Carbon Supports.
    Pentsak EO; Galushko AS; Cherepanova VA; Ananikov VP
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.