BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28960956)

  • 1. Cellulose Nanofiber Alignment Using Evaporation-Induced Droplet-Casting, and Cell Alignment on Aligned Nanocellulose Surfaces.
    Skogberg A; Mäki AJ; Mettänen M; Lahtinen P; Kallio P
    Biomacromolecules; 2017 Dec; 18(12):3936-3953. PubMed ID: 28960956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface.
    Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A
    Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties.
    Peng XW; Ren JL; Zhong LX; Sun RC
    Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change in the Crystallite Orientation of Poly(ethylene oxide)/Cellulose Nanofiber Composite Films.
    Fukuya MN; Senoo K; Kotera M; Yoshimoto M; Sakata O
    Biomacromolecules; 2017 Dec; 18(12):4411-4415. PubMed ID: 29172447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites.
    Poyraz B; Tozluoğlu A; Candan Z; Demir A; Yavuz M
    Int J Biol Macromol; 2017 Nov; 104(Pt A):384-392. PubMed ID: 28602986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice.
    Xiong Z; Lin M; Lin H; Huang M
    Carbohydr Polym; 2018 Jun; 189():79-86. PubMed ID: 29580429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Structural and Mechanical Properties of Cellulose Nanofiber Substrates in Aqueous Conditions for Stem Cell Culture.
    Smyth M; Fournier C; Driemeier C; Picart C; Foster EJ; Bras J
    Biomacromolecules; 2017 Jul; 18(7):2034-2044. PubMed ID: 28485582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-Initiated Controlled Radical Polymerization Approach To Enhance Nanocomposite Integration of Cellulose Nanofibrils.
    Navarro JRG; Edlund U
    Biomacromolecules; 2017 Jun; 18(6):1947-1955. PubMed ID: 28482654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions.
    Tsang M; Chun YW; Im YM; Khang D; Webster TJ
    Tissue Eng Part A; 2011 Jul; 17(13-14):1879-89. PubMed ID: 21417694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-shell cellulose nanofibers for biocomposites - nanostructural effects in hydrated state.
    Prakobna K; Terenzi C; Zhou Q; Furó I; Berglund LA
    Carbohydr Polym; 2015 Jul; 125():92-102. PubMed ID: 25857964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015; 127():101-9. PubMed ID: 25965462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of mixing efficiency in elaborating of chitosan/cellulose nanocomposite via statistical analyses.
    Ghazanfari M; Ranginkar Jahromi I; Moallemi-Oreh A; Ebadi-Dehaghani H; Akbarzadeh M
    Int J Biol Macromol; 2016 Dec; 93(Pt A):703-711. PubMed ID: 27608545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional Freezing of Nanocellulose Dispersions Aligns the Rod-Like Particles and Produces Low-Density and Robust Particle Networks.
    Munier P; Gordeyeva K; Bergström L; Fall AB
    Biomacromolecules; 2016 May; 17(5):1875-81. PubMed ID: 27071304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach.
    Wang T; Drzal LT
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5079-85. PubMed ID: 22991937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructural effects on polymer and water dynamics in cellulose biocomposites: (2)h and (13)c NMR relaxometry.
    Terenzi C; Prakobna K; Berglund LA; Furó I
    Biomacromolecules; 2015 May; 16(5):1506-15. PubMed ID: 25853702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Route to Transparent, Strong, and Thermally Stable Nanocellulose/Polymer Nanocomposites from an Aqueous Pickering Emulsion.
    Fujisawa S; Togawa E; Kuroda K
    Biomacromolecules; 2017 Jan; 18(1):266-271. PubMed ID: 27958712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic cross-linking of cellulose nanofibers: an approach to enhance mechanical stability for dynamic adsorption.
    Muqeet M; Qureshi UA; Mahar RB; Khatri Z; Ahmed F; Kim IS
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):28842-28851. PubMed ID: 31376130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivity.
    Skogberg A; Siljander S; Mäki AJ; Honkanen M; Efimov A; Hannula M; Lahtinen P; Tuukkanen S; Björkqvist T; Kallio P
    Nanoscale; 2022 Jan; 14(2):448-463. PubMed ID: 34908086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocomposite hydrogel based on carrageenan-coated starch/cellulose nanofibers as a hemorrhage control material.
    Tavakoli S; Kharaziha M; Nemati S; Kalateh A
    Carbohydr Polym; 2021 Jan; 251():117013. PubMed ID: 33142576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface functionalization and size modulate the formation of reactive oxygen species and genotoxic effects of cellulose nanofibrils.
    Aimonen K; Imani M; Hartikainen M; Suhonen S; Vanhala E; Moreno C; Rojas OJ; Norppa H; Catalán J
    Part Fibre Toxicol; 2022 Mar; 19(1):19. PubMed ID: 35296350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.