These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 28960962)

  • 21. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes.
    Bhatt MD; O'Dwyer C
    Phys Chem Chem Phys; 2015 Feb; 17(7):4799-844. PubMed ID: 25613366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beam damage in operando X-ray diffraction studies of Li-ion batteries.
    Christensen CK; Karlsen MA; Drejer AØ; Andersen BP; Jakobsen CL; Johansen M; Sørensen DR; Kantor I; Jørgensen MRV; Ravnsbæk DB
    J Synchrotron Radiat; 2023 May; 30(Pt 3):561-570. PubMed ID: 36952234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ electrochemical synchrotron radiation for Li-ion batteries.
    Alemu T; Wang FM
    J Synchrotron Radiat; 2018 Jan; 25(Pt 1):151-165. PubMed ID: 29271765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.
    Lee S; Kwon G; Ku K; Yoon K; Jung SK; Lim HD; Kang K
    Adv Mater; 2018 Oct; 30(42):e1704682. PubMed ID: 29582467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ and Operando Tracking of Microstructure and Volume Evolution of Silicon Electrodes by using Synchrotron X-ray Imaging.
    Dong K; Markötter H; Sun F; Hilger A; Kardjilov N; Banhart J; Manke I
    ChemSusChem; 2019 Jan; 12(1):261-269. PubMed ID: 30296015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synchrotron radiation based X-ray techniques for analysis of cathodes in Li rechargeable batteries.
    Singh JP; Paidi AK; Chae KH; Lee S; Ahn D
    RSC Adv; 2022 Jul; 12(31):20360-20378. PubMed ID: 35919598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry.
    Durham JL; Poyraz AS; Takeuchi ES; Marschilok AC; Takeuchi KJ
    Acc Chem Res; 2016 Sep; 49(9):1864-72. PubMed ID: 27564839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties.
    Islam MS; Fisher CA
    Chem Soc Rev; 2014 Jan; 43(1):185-204. PubMed ID: 24202440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. VOCl as a Cathode for Rechargeable Chloride Ion Batteries.
    Gao P; Reddy MA; Mu X; Diemant T; Zhang L; Zhao-Karger Z; Chakravadhanula VS; Clemens O; Behm RJ; Fichtner M
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4285-90. PubMed ID: 26924132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Situ Powder Diffraction Studies of Electrode Materials in Rechargeable Batteries.
    Sharma N; Pang WK; Guo Z; Peterson VK
    ChemSusChem; 2015 Sep; 8(17):2826-53. PubMed ID: 26223736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward
    Maibach J; Rizell J; Matic A; Mozhzhukhina N
    ACS Mater Lett; 2023 Sep; 5(9):2431-2444. PubMed ID: 37680543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the electrode-solution interfaces in rechargeable batteries by sum-frequency generation spectroscopy.
    Ge A; Inoue KI; Ye S
    J Chem Phys; 2020 Nov; 153(17):170902. PubMed ID: 33167651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries.
    Chen X; Zhou Z; Karahan HE; Shao Q; Wei L; Chen Y
    Small; 2018 Nov; 14(44):e1801929. PubMed ID: 30160051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Editorial for focus on nanophase materials for next-generation lithium-ion batteries and beyond.
    Meng X; Chen Z; Li J; Harrison KL; Lu W; Sun X
    Nanotechnology; 2022 Jul; 33(41):. PubMed ID: 34730108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Progress in Rechargeable Sodium-Ion Batteries: toward High-Power Applications.
    Pu X; Wang H; Zhao D; Yang H; Ai X; Cao S; Chen Z; Cao Y
    Small; 2019 Aug; 15(32):e1805427. PubMed ID: 30773812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms.
    Wang X; Weng Q; Yang Y; Bando Y; Golberg D
    Chem Soc Rev; 2016 Aug; 45(15):4042-73. PubMed ID: 27196691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy.
    Liu X; Wang D; Liu G; Srinivasan V; Liu Z; Hussain Z; Yang W
    Nat Commun; 2013; 4():2568. PubMed ID: 24100759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced High Energy Density Secondary Batteries with Multi-Electron Reaction Materials.
    Chen R; Luo R; Huang Y; Wu F; Li L
    Adv Sci (Weinh); 2016 Oct; 3(10):1600051. PubMed ID: 27840796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.