These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28960998)

  • 21. High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum.
    Chou YH; Wu YM; Hong KB; Chou BT; Shih JH; Chung YC; Chen PY; Lin TR; Lin CC; Lin SD; Lu TC
    Nano Lett; 2016 May; 16(5):3179-86. PubMed ID: 27089144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lasing action in a strongly coupled silicon nanowire pair.
    Chen S; Niu J; Li L; Lu C; Shi L; Xie C
    Opt Lett; 2022 May; 47(9):2246-2249. PubMed ID: 35486771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semiconductor plasmonic nanolasers: current status and perspectives.
    Gwo S; Shih CK
    Rep Prog Phys; 2016 Aug; 79(8):086501. PubMed ID: 27459210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Switching of Photonic Crystal Lasers by Graphene.
    Hwang MS; Kim HR; Kim KH; Jeong KY; Park JS; Choi JH; Kang JH; Lee JM; Park WI; Song JH; Seo MK; Park HG
    Nano Lett; 2017 Mar; 17(3):1892-1898. PubMed ID: 28165745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rigorous theoretical analysis of a surface-plasmon nanolaser with monolayer MoS
    Meng X; Grote RR; Jin W; Dadap JI; Panoiu NC; Osgood RM
    Opt Lett; 2016 Jun; 41(11):2636-9. PubMed ID: 27244433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On-chip single-mode CdS nanowire laser.
    Bao Q; Li W; Xu P; Zhang M; Dai D; Wang P; Guo X; Tong L
    Light Sci Appl; 2020; 9():42. PubMed ID: 32194956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation.
    Liu Z; Yin L; Ning H; Yang Z; Tong L; Ning CZ
    Nano Lett; 2013 Oct; 13(10):4945-50. PubMed ID: 24016196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monolithic integration of III-V nanowire with photonic crystal microcavity for vertical light emission.
    Larrue A; Wilhelm C; Vest G; Combrié S; de Rossi A; Soci C
    Opt Express; 2012 Mar; 20(7):7758-70. PubMed ID: 22453454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Directional Lasing from Nanopatterned Halide Perovskite Nanowire.
    Zhizhchenko AY; Cherepakhin AB; Masharin MA; Pushkarev AP; Kulinich SA; Kuchmizhak AA; Makarov SV
    Nano Lett; 2021 Dec; 21(23):10019-10025. PubMed ID: 34802241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Room-Temperature Broad-Wavelength-Tunable Single-Mode Lasing from Alloyed CdS
    Guo P; Yang Q; Shen X; Lv Q; Hao Y; Xiao L; Ho JC; Yu KM
    ACS Nano; 2022 Aug; 16(8):12767-12776. PubMed ID: 35916454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Precision Wavelength Tuning of GeSn Nanobeam Lasers via Dynamically Controlled Strain Engineering.
    Kim Y; Joo HJ; Chen M; Son B; Burt D; Shi X; Zhang L; Ikonic Z; Tan CS; Nam D
    Adv Sci (Weinh); 2023 Jun; 10(17):e2207611. PubMed ID: 37072675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanowire Oligomer Waveguide Modes towards Reduced Lasing Threshold.
    Mäntynen H; Anttu N; Lipsanen H
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33287138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-threshold optically pumped lasing in highly strained germanium nanowires.
    Bao S; Kim D; Onwukaeme C; Gupta S; Saraswat K; Lee KH; Kim Y; Min D; Jung Y; Qiu H; Wang H; Fitzgerald EA; Tan CS; Nam D
    Nat Commun; 2017 Nov; 8(1):1845. PubMed ID: 29184064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning Spontaneous Emission through Waveguide Cavity Effects in Semiconductor Nanowires.
    Dirnberger F; Abujetas D; König J; Forsch M; Koller T; Gronwald I; Lange C; Huber R; Schüller C; Korn T; Sánchez-Gil J; Bougeard D
    Nano Lett; 2019 Oct; 19(10):7287-7292. PubMed ID: 31525062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time tunable lasing from plasmonic nanocavity arrays.
    Yang A; Hoang TB; Dridi M; Deeb C; Mikkelsen MH; Schatz GC; Odom TW
    Nat Commun; 2015 Apr; 6():6939. PubMed ID: 25891212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mid-Infrared Lasing of Single Wurtzite InAs Nanowire.
    Sumikura H; Zhang G; Takiguchi M; Takemura N; Shinya A; Gotoh H; Notomi M
    Nano Lett; 2019 Nov; 19(11):8059-8065. PubMed ID: 31638818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carrier saturation in multiple quantum well metallo-dielectric semiconductor nanolaser: is bulk material a better choice for gain media?
    Vallini F; Gu Q; Kats M; Fainman Y; Frateschi NC
    Opt Express; 2013 Nov; 21(22):25985-98. PubMed ID: 24216824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A quantum optical study of thresholdless lasing features in high-β nitride nanobeam cavities.
    Jagsch ST; Triviño NV; Lohof F; Callsen G; Kalinowski S; Rousseau IM; Barzel R; Carlin JF; Jahnke F; Butté R; Gies C; Hoffmann A; Grandjean N; Reitzenstein S
    Nat Commun; 2018 Feb; 9(1):564. PubMed ID: 29422492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perovskite-Gallium Phosphide Platform for Reconfigurable Visible-Light Nanophotonic Chip.
    Trofimov P; Pushkarev AP; Sinev IS; Fedorov VV; Bruyère S; Bolshakov A; Mukhin IS; Makarov SV
    ACS Nano; 2020 Jul; 14(7):8126-8134. PubMed ID: 32539336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lasing Action in Single Subwavelength Particles Supporting Supercavity Modes.
    Mylnikov V; Ha ST; Pan Z; Valuckas V; Paniagua-Domínguez R; Demir HV; Kuznetsov AI
    ACS Nano; 2020 Jun; 14(6):7338-7346. PubMed ID: 32459463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.