These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 28961041)

  • 1. Mechanisms of gut microbiota-mediated bone remodeling.
    Yan J; Takakura A; Zandi-Nejad K; Charles JF
    Gut Microbes; 2018 Jan; 9(1):84-92. PubMed ID: 28961041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut microbiota induce IGF-1 and promote bone formation and growth.
    Yan J; Herzog JW; Tsang K; Brennan CA; Bower MA; Garrett WS; Sartor BR; Aliprantis AO; Charles JF
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):E7554-E7563. PubMed ID: 27821775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism.
    Morrison DJ; Preston T
    Gut Microbes; 2016 May; 7(3):189-200. PubMed ID: 26963409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gut Microbiota and IGF-1.
    Yan J; Charles JF
    Calcif Tissue Int; 2018 Apr; 102(4):406-414. PubMed ID: 29362822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases.
    Sun M; Wu W; Liu Z; Cong Y
    J Gastroenterol; 2017 Jan; 52(1):1-8. PubMed ID: 27448578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations.
    van de Wouw M; Boehme M; Lyte JM; Wiley N; Strain C; O'Sullivan O; Clarke G; Stanton C; Dinan TG; Cryan JF
    J Physiol; 2018 Oct; 596(20):4923-4944. PubMed ID: 30066368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gut Microbiota-Derived Short-Chain Fatty Acids Promote Prostate Cancer Growth via IGF1 Signaling.
    Matsushita M; Fujita K; Hayashi T; Kayama H; Motooka D; Hase H; Jingushi K; Yamamichi G; Yumiba S; Tomiyama E; Koh Y; Hayashi Y; Nakano K; Wang C; Ishizuya Y; Kato T; Hatano K; Kawashima A; Ujike T; Uemura M; Imamura R; Rodriguez Pena MDC; Gordetsky JB; Netto GJ; Tsujikawa K; Nakamura S; Takeda K; Nonomura N
    Cancer Res; 2021 Aug; 81(15):4014-4026. PubMed ID: 34039634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiome mediation of animal life histories via metabolites and insulin-like signalling.
    Warne RW; Dallas J
    Biol Rev Camb Philos Soc; 2022 Jun; 97(3):1118-1130. PubMed ID: 35043537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gut microbiome production of short-chain fatty acids and obesity in children.
    Murugesan S; Nirmalkar K; Hoyo-Vadillo C; García-Espitia M; Ramírez-Sánchez D; García-Mena J
    Eur J Clin Microbiol Infect Dis; 2018 Apr; 37(4):621-625. PubMed ID: 29196878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between gut microbiota and non-alcoholic liver disease: The role of microbiota-derived metabolites.
    Ding Y; Yanagi K; Cheng C; Alaniz RC; Lee K; Jayaraman A
    Pharmacol Res; 2019 Mar; 141():521-529. PubMed ID: 30660825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The gut-bone axis: how bacterial metabolites bridge the distance.
    Zaiss MM; Jones RM; Schett G; Pacifici R
    J Clin Invest; 2019 Jul; 129(8):3018-3028. PubMed ID: 31305265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of humoral immunity by gut microbial products.
    Kim M; Kim CH
    Gut Microbes; 2017 Jul; 8(4):392-399. PubMed ID: 28332901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Commensal Gut Microbiota Immunomodulatory Actions in Bone Marrow and Liver have Catabolic Effects on Skeletal Homeostasis in Health.
    Novince CM; Whittow CR; Aartun JD; Hathaway JD; Poulides N; Chavez MB; Steinkamp HM; Kirkwood KA; Huang E; Westwater C; Kirkwood KL
    Sci Rep; 2017 Jul; 7(1):5747. PubMed ID: 28720797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls.
    Unger MM; Spiegel J; Dillmann KU; Grundmann D; Philippeit H; Bürmann J; Faßbender K; Schwiertz A; Schäfer KH
    Parkinsonism Relat Disord; 2016 Nov; 32():66-72. PubMed ID: 27591074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites.
    Tsvetikova SA; Koshel EI
    Int J Med Microbiol; 2020 May; 310(4):151425. PubMed ID: 32423739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary Fiber Gap and Host Gut Microbiota.
    Han M; Wang C; Liu P; Li D; Li Y; Ma X
    Protein Pept Lett; 2017 May; 24(5):388-396. PubMed ID: 28219317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex.
    Rizzetto L; Fava F; Tuohy KM; Selmi C
    J Autoimmun; 2018 Aug; 92():12-34. PubMed ID: 29861127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing future prebiotic fiber to target metabolic syndrome.
    Jakobsdottir G; Nyman M; Fåk F
    Nutrition; 2014 May; 30(5):497-502. PubMed ID: 24262515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Glycosidic Bond Configuration on Short Chain Fatty Acid Production from Model Fermentable Carbohydrates by the Human Gut Microbiota.
    Harris HC; Edwards CA; Morrison DJ
    Nutrients; 2017 Jan; 9(1):. PubMed ID: 28045429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis.
    Sun M; Wu W; Chen L; Yang W; Huang X; Ma C; Chen F; Xiao Y; Zhao Y; Ma C; Yao S; Carpio VH; Dann SM; Zhao Q; Liu Z; Cong Y
    Nat Commun; 2018 Sep; 9(1):3555. PubMed ID: 30177845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.