BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28961118)

  • 1. Advanced Boundary Electrode Modeling for tES and Parallel tES/EEG.
    Pursiainen S; Agsten B; Wagner S; Wolters CH
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):37-44. PubMed ID: 28961118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple method for EEG guided transcranial electrical stimulation without models.
    Cancelli A; Cottone C; Tecchio F; Truong DQ; Dmochowski J; Bikson M
    J Neural Eng; 2016 Jun; 13(3):036022. PubMed ID: 27172063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forward and inverse effects of the complete electrode model in neonatal EEG.
    Pursiainen S; Lew S; Wolters CH
    J Neurophysiol; 2017 Mar; 117(3):876-884. PubMed ID: 27852731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete electrode model in EEG: relationship and differences to the point electrode model.
    Pursiainen S; Lucka F; Wolters CH
    Phys Med Biol; 2012 Feb; 57(4):999-1017. PubMed ID: 22297396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing EEG activity in the targeted cortex after focal transcranial electrical stimulation.
    Tashiro S; Siebner HR; Charalampaki A; Göksu C; Saturnino GB; Thielscher A; Tomasevic L
    Brain Stimul; 2020; 13(3):815-818. PubMed ID: 32289712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.
    Huang Y; Parra LC; Haufe S
    Neuroimage; 2016 Oct; 140():150-62. PubMed ID: 26706450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation.
    Dmochowski JP; Koessler L; Norcia AM; Bikson M; Parra LC
    Neuroimage; 2017 Aug; 157():69-80. PubMed ID: 28578130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of electrode-electrolyte spatial mismatch on transcranial direct current stimulation: a finite element modeling study.
    Chen L; Zou X; Tang R; Ke A; He J
    J Neural Eng; 2019 Aug; 16(5):056012. PubMed ID: 31195379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the importance of precise electrode placement for targeted transcranial electric stimulation.
    Opitz A; Yeagle E; Thielscher A; Schroeder C; Mehta AD; Milham MP
    Neuroimage; 2018 Nov; 181():560-567. PubMed ID: 30010008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking transcranial electrical stimulation finite element models: a comparison study.
    Indahlastari A; Chauhan M; Sadleir RJ
    J Neural Eng; 2019 Apr; 16(2):026019. PubMed ID: 30605892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using reciprocity for relating the simulation of transcranial current stimulation to the EEG forward problem.
    Wagner S; Lucka F; Vorwerk J; Herrmann CS; Nolte G; Burger M; Wolters CH
    Neuroimage; 2016 Oct; 140():163-73. PubMed ID: 27125841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel bifunctional cap for simultaneous electroencephalography and transcranial electrical stimulation.
    Wunder S; Hunold A; Fiedler P; Schlegelmilch F; Schellhorn K; Haueisen J
    Sci Rep; 2018 May; 8(1):7259. PubMed ID: 29740054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accessibility of cortical regions to focal TES: Dependence on spatial position, safety, and practical constraints.
    Saturnino GB; Siebner HR; Thielscher A; Madsen KH
    Neuroimage; 2019 Dec; 203():116183. PubMed ID: 31525498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tolerability of Repeated Application of Transcranial Electrical Stimulation with Limited Outputs to Healthy Subjects.
    Paneri B; Adair D; Thomas C; Khadka N; Patel V; Tyler WJ; Parra L; Bikson M
    Brain Stimul; 2016; 9(5):740-754. PubMed ID: 27372844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Electrode Drift in Transcranial Direct Current Stimulation.
    Woods AJ; Bryant V; Sacchetti D; Gervits F; Hamilton R
    Brain Stimul; 2015; 8(3):515-9. PubMed ID: 25583653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel flexible cap for application of transcranial electrical stimulation: a usability study.
    Hunold A; Ortega D; Schellhorn K; Haueisen J
    Biomed Eng Online; 2020 Jun; 19(1):50. PubMed ID: 32552720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation.
    Seo H; Jun SC
    Brain Stimul; 2019; 12(2):275-289. PubMed ID: 30449635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods to monitor accurate and consistent electrode placements in conventional transcranial electrical stimulation.
    Indahlastari A; Albizu A; Nissim NR; Traeger KR; O'Shea A; Woods AJ
    Brain Stimul; 2019; 12(2):267-274. PubMed ID: 30420198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling transcranial electric stimulation in mouse: a high resolution finite element study.
    Bernabei JM; Lee WH; Peterchev AV
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():406-9. PubMed ID: 25569982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced tES and tDCS computational models by meninges emulation.
    Jiang J; Truong DQ; Esmaeilpour Z; Huang Y; Badran BW; Bikson M
    J Neural Eng; 2020 Jan; 17(1):016027. PubMed ID: 31689695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.