These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28961123)

  • 1. Discovery of Functional Motifs from the Interface Region of Oligomeric Proteins Using Frequent Subgraph Mining.
    Saha TK; Katebi A; Dhifli W; Al Hasan M
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1537-1549. PubMed ID: 28961123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiently Mining Recurrent Substructures from Protein Three-Dimensional Structure Graphs.
    Saidi R; Dhifli W; Maddouri M; Mephu Nguifo E
    J Comput Biol; 2019 Jun; 26(6):561-571. PubMed ID: 30517022
    [No Abstract]   [Full Text] [Related]  

  • 3. Smoothing 3D protein structure motifs through graph mining and amino acid similarities.
    Dhifli W; Saidi R; Nguifo EM
    J Comput Biol; 2014 Feb; 21(2):162-72. PubMed ID: 24117330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling Graphs, Efficient Algorithms and B-Cell Epitope Prediction.
    Liang Zhao ; Hoi SC; Li Z; Wong L; Nguyen H; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):7-16. PubMed ID: 26355502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing graph representations of protein structure for mining family-specific residue-based packing motifs.
    Huan J; Bandyopadhyay D; Wang W; Snoeyink J; Prins J; Tropsha A
    J Comput Biol; 2005; 12(6):657-71. PubMed ID: 16108709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scoring protein interaction decoys using exposed residues (SPIDER): a novel multibody interaction scoring function based on frequent geometric patterns of interfacial residues.
    Khashan R; Zheng W; Tropsha A
    Proteins; 2012 Aug; 80(9):2207-17. PubMed ID: 22581643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance-based identification of structure motifs in proteins using constrained frequent subgraph mining.
    Huan J; Bandyopadhyay D; Prins J; Snoeyink J; Tropsha A; Wang W
    Comput Syst Bioinformatics Conf; 2006; ():227-38. PubMed ID: 17369641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate classification of protein structural families using coherent subgraph analysis.
    Huan J; Wang W; Washington A; Prins J; Shah R; Tropsha A
    Pac Symp Biocomput; 2004; ():411-22. PubMed ID: 14992521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovering interesting molecular substructures for molecular classification.
    Lam WW; Chan KC
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):77-89. PubMed ID: 20650702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional neighbors: inferring relationships between nonhomologous protein families using family-specific packing motifs.
    Bandyopadhyay D; Huan J; Liu J; Prins J; Snoeyink J; Wang W; Tropsha A
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1137-43. PubMed ID: 20570776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mining the Enriched Subgraphs for Specific Vertices in a Biological Graph.
    Meysman P; Saeys Y; Sabaghian E; Bittremieux W; Van de Peer Y; Goethals B; Laukens K
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1496-1507. PubMed ID: 27295680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Graph Approach to Mining Biological Patterns in the Binding Interfaces.
    Cheng W; Yan C
    J Comput Biol; 2017 Jan; 24(1):31-39. PubMed ID: 27892693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of family-specific residue packing motifs and their use for structure-based protein function prediction: I. Method development.
    Bandyopadhyay D; Huan J; Prins J; Snoeyink J; Wang W; Tropsha A
    J Comput Aided Mol Des; 2009 Nov; 23(11):773-84. PubMed ID: 19543979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure motif discovery and mining the PDB.
    Jonassen I; Eidhammer I; Conklin D; Taylor WR
    Bioinformatics; 2002 Feb; 18(2):362-7. PubMed ID: 11847094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks.
    He J; Wang C; Qiu K; Zhong W
    BMC Syst Biol; 2014; 8 Suppl 3(Suppl 3):S6. PubMed ID: 25350277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IncMD: incremental trie-based structural motif discovery algorithm.
    Badr G; Al-Turaiki I; Turcotte M; Mathkour H
    J Bioinform Comput Biol; 2014 Oct; 12(5):1450027. PubMed ID: 25362841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grasping frequent subgraph mining for bioinformatics applications.
    Mrzic A; Meysman P; Bittremieux W; Moris P; Cule B; Goethals B; Laukens K
    BioData Min; 2018; 11():20. PubMed ID: 30202444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.
    Wei Q; La D; Kihara D
    Methods Mol Biol; 2017; 1529():279-289. PubMed ID: 27914057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated protein motif generation in the structure-based protein function prediction tool ProMOL.
    Osipovitch M; Lambrecht M; Baker C; Madha S; Mills JL; Craig PA; Bernstein HJ
    J Struct Funct Genomics; 2015 Dec; 16(3-4):101-11. PubMed ID: 26573864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hash subgraph pairwise kernel for protein-protein interaction extraction.
    Zhang Y; Lin H; Yang Z; Wang J; Li Y
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1190-202. PubMed ID: 22595237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.