These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28961521)

  • 1. IPMP Global Fit - A one-step direct data analysis tool for predictive microbiology.
    Huang L
    Int J Food Microbiol; 2017 Dec; 262():38-48. PubMed ID: 28961521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IPMP 2013--a comprehensive data analysis tool for predictive microbiology.
    Huang L
    Int J Food Microbiol; 2014 Feb; 171():100-7. PubMed ID: 24334095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive model for the growth kinetics of Staphylococcus aureus in raw pork developed using Integrated Pathogen Modeling Program (IPMP) 2013.
    Lee YJ; Jung BS; Kim KT; Paik HD
    Meat Sci; 2015 Sep; 107():20-5. PubMed ID: 25930109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of Staphylococcus aureus in Cooked Potato and Potato Salad--A One-Step Kinetic Analysis.
    Huang L
    J Food Sci; 2015 Dec; 80(12):M2837-44. PubMed ID: 26539902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of associations and kinetic models for microbiological data to be used in comprehensive food safety prediction software.
    Halder A; Black DG; Davidson PM; Datta A
    J Food Sci; 2010 Aug; 75(6):R107-20. PubMed ID: 20722946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinactivation FE: A free web application for modelling isothermal and dynamic microbial inactivation.
    Garre A; Clemente-Carazo M; Fernández PS; Lindqvist R; Egea JA
    Food Res Int; 2018 Oct; 112():353-360. PubMed ID: 30131146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal experimental design for improving the estimation of growth parameters of Lactobacillus viridescens from data under non-isothermal conditions.
    Longhi DA; Martins WF; da Silva NB; Carciofi BA; de Aragão GM; Laurindo JB
    Int J Food Microbiol; 2017 Jan; 240():57-62. PubMed ID: 27427489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinactivation: Software for modelling dynamic microbial inactivation.
    Garre A; Fernández PS; Lindqvist R; Egea JA
    Food Res Int; 2017 Mar; 93():66-74. PubMed ID: 28290281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microrisk Lab: An Online Freeware for Predictive Microbiology.
    Liu Y; Wang X; Liu B; Yuan S; Qin X; Dong Q
    Foodborne Pathog Dis; 2021 Aug; 18(8):607-615. PubMed ID: 34191593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of modelling approaches for the prediction of kinetic growth parameters of
    Tarlak F; Costa JCCP
    Food Sci Technol Int; 2023 Sep; 29(6):631-640. PubMed ID: 35642261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the Performance of a New Model for Predicting the Growth of Clostridium perfringens in Cooked, Uncured Meat and Poultry Products under Isothermal, Heating, and Dynamically Cooling Conditions.
    Huang L
    J Food Sci; 2016 Jul; 81(7):M1754-65. PubMed ID: 27259065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic predictive model for the growth of Salmonella spp. in liquid whole egg.
    Singh A; Korasapati NR; Juneja VK; Subbiah J; Froning G; Thippareddi H
    J Food Sci; 2011 Apr; 76(3):M225-32. PubMed ID: 21535848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guidelines for the design of (optimal) isothermal inactivation experiments.
    Peñalver-Soto JL; Garre A; Esnoz A; Fernández PS; Egea JA
    Food Res Int; 2019 Dec; 126():108714. PubMed ID: 31732079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic determination of kinetic parameters, computer simulation, and probabilistic analysis of growth of Clostridium perfringens in cooked beef during cooling.
    Huang L
    Int J Food Microbiol; 2015 Feb; 195():20-9. PubMed ID: 25500276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temperature on microbial growth rate-mathematical analysis: the Arrhenius and Eyring-Polanyi connections.
    Huang L; Hwang A; Phillips J
    J Food Sci; 2011 Oct; 76(8):E553-60. PubMed ID: 22417589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimization algorithm for estimation of microbial survival parameters during thermal processing.
    Chen G; Campanella OH
    Int J Food Microbiol; 2012 Mar; 154(1-2):52-8. PubMed ID: 22244193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 'MicroHibro': A software tool for predictive microbiology and microbial risk assessment in foods.
    González SC; Possas A; Carrasco E; Valero A; Bolívar A; Posada-Izquierdo GD; García-Gimeno RM; Zurera G; Pérez-Rodríguez F
    Int J Food Microbiol; 2019 Feb; 290():226-236. PubMed ID: 30368088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and predicting non-isothermal microbial growth using general purpose software.
    Corradini MG; Amézquita A; Normand MD; Peleg M
    Int J Food Microbiol; 2006 Feb; 106(2):223-8. PubMed ID: 16226331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature effect on bacterial growth rate: quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food.
    Membré JM; Leporq B; Vialette M; Mettler E; Perrier L; Thuault D; Zwietering M
    Int J Food Microbiol; 2005 Apr; 100(1-3):179-86. PubMed ID: 15854703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.