These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28961706)

  • 1. Genome-wide association studies using a penalized moving-window regression.
    Bao M; Wang K
    Bioinformatics; 2017 Dec; 33(24):3887-3894. PubMed ID: 28961706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accounting for linkage disequilibrium in genome-wide association studies: A penalized regression method.
    Liu J; Wang K; Ma S; Huang J
    Stat Interface; 2013 Jan; 6(1):99-115. PubMed ID: 25258655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple testing in genome-wide association studies via hidden Markov models.
    Wei Z; Sun W; Wang K; Hakonarson H
    Bioinformatics; 2009 Nov; 25(21):2802-8. PubMed ID: 19654115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Implementation of Penalized Regression for Genetic Risk Prediction.
    Privé F; Aschard H; Blum MGB
    Genetics; 2019 May; 212(1):65-74. PubMed ID: 30808621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide association analysis by lasso penalized logistic regression.
    Wu TT; Chen YF; Hastie T; Sobel E; Lange K
    Bioinformatics; 2009 Mar; 25(6):714-21. PubMed ID: 19176549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iterative hard thresholding for model selection in genome-wide association studies.
    Keys KL; Chen GK; Lange K
    Genet Epidemiol; 2017 Dec; 41(8):756-768. PubMed ID: 28875524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Penalized multimarker vs. single-marker regression methods for genome-wide association studies of quantitative traits.
    Yi H; Breheny P; Imam N; Liu Y; Hoeschele I
    Genetics; 2015 Jan; 199(1):205-22. PubMed ID: 25354699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A variable selection method for genome-wide association studies.
    He Q; Lin DY
    Bioinformatics; 2011 Jan; 27(1):1-8. PubMed ID: 21036813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient penalized generalized linear mixed models for variable selection and genetic risk prediction in high-dimensional data.
    St-Pierre J; Oualkacha K; Bhatnagar SR
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36708013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prioritizing genetic variants in GWAS with lasso using permutation-assisted tuning.
    Yang S; Wen J; Eckert ST; Wang Y; Liu DJ; Wu R; Li R; Zhan X
    Bioinformatics; 2020 Jun; 36(12):3811-3817. PubMed ID: 32246825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistage analysis strategies for genome-wide association studies: summary of group 3 contributions to Genetic Analysis Workshop 16.
    Neuman RJ; Sung YJ
    Genet Epidemiol; 2009; 33 Suppl 1(Suppl 1):S19-23. PubMed ID: 19924712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SNP selection in genome-wide association studies via penalized support vector machine with MAX test.
    Kim J; Sohn I; Kim DD; Jung SH
    Comput Math Methods Med; 2013; 2013():340678. PubMed ID: 24174989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iterative hard thresholding in genome-wide association studies: Generalized linear models, prior weights, and double sparsity.
    Chu BB; Keys KL; German CA; Zhou H; Zhou JJ; Sobel EM; Sinsheimer JS; Lange K
    Gigascience; 2020 Jun; 9(6):. PubMed ID: 32491161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Current status of SNPs interaction in genome-wide association study].
    Li FG; Wang ZP; Hu G; Li H
    Yi Chuan; 2011 Sep; 33(9):901-10. PubMed ID: 21951789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of gene-environment interactions in the presence of linkage disequilibrium and noise by using genetic risk scores with internal weights from elastic net regression.
    Hüls A; Ickstadt K; Schikowski T; Krämer U
    BMC Genet; 2017 Jun; 18(1):55. PubMed ID: 28606108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative Bayesian variable selection with gene-based informative priors for genome-wide association studies.
    Zhang X; Xue F; Liu H; Zhu D; Peng B; Wiemels JL; Yang X
    BMC Genet; 2014 Dec; 15():130. PubMed ID: 25491445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating group correlations in genome-wide association studies using smoothed group Lasso.
    Liu J; Huang J; Ma S; Wang K
    Biostatistics; 2013 Apr; 14(2):205-19. PubMed ID: 22988281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regularized regression method for genome-wide association studies.
    Liu J; Wang K; Ma S; Huang J
    BMC Proc; 2011 Nov; 5 Suppl 9(Suppl 9):S67. PubMed ID: 22373491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.