BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28961783)

  • 1. The velamen radicum is common among terrestrial monocotyledons.
    Zotz G; Schickenberg N; Albach D
    Ann Bot; 2017 Nov; 120(5):625-632. PubMed ID: 28961783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processes controlling programmed cell death of root velamen radicum in an epiphytic orchid.
    Li JW; Zhang SB; Xi HP; Bradshaw CJA; Zhang JL
    Ann Bot; 2020 Jul; 126(2):261-275. PubMed ID: 32318689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake.
    Zotz G; Winkler U
    Oecologia; 2013 Mar; 171(3):733-41. PubMed ID: 23292456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The velamen protects photosynthetic orchid roots against UV-B damage, and a large dated phylogeny implies multiple gains and losses of this function during the Cenozoic.
    Chomicki G; Bidel LPR; Ming F; Coiro M; Zhang X; Wang Y; Baissac Y; Jay-Allemand C; Renner SS
    New Phytol; 2015 Feb; 205(3):1330-1341. PubMed ID: 25345817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological diversity of the velamen radicum in the genus Anthurium (Araceae).
    Tay JYL; Werner JC; Zotz G
    Plant Biol (Stuttg); 2024 Jun; ():. PubMed ID: 38924293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does A Velamen Radicum Effectively Protect Epiphyte Roots against Excessive Infrared Radiation?
    Rodríguez Quiel C; Einzmann HJR; Zotz G
    Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gains and losses of the epiphytic lifestyle in epidendroid orchids: review and new analyses of succulence traits.
    Collobert G; Perez-Lamarque B; Dubuisson JY; Martos F
    Ann Bot; 2023 Nov; 132(4):787-800. PubMed ID: 37777476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological diversity of orchids.
    Zhang S; Yang Y; Li J; Qin J; Zhang W; Huang W; Hu H
    Plant Divers; 2018 Aug; 40(4):196-208. PubMed ID: 30740565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative physiological and proteomic analyses reveal different adaptive strategies by Cymbidium sinense and C. tracyanum to drought.
    Li JW; Chen XD; Hu XY; Ma L; Zhang SB
    Planta; 2018 Jan; 247(1):69-97. PubMed ID: 28871432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epiphytism and pollinator specialization: drivers for orchid diversity?
    Gravendeel B; Smithson A; Slik FJ; Schuiteman A
    Philos Trans R Soc Lond B Biol Sci; 2004 Oct; 359(1450):1523-35. PubMed ID: 15519970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots.
    Rudall PJ; Bateman RM
    Biol Rev Camb Philos Soc; 2002 Aug; 77(3):403-41. PubMed ID: 12227521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural plasticity in roots of the hemiepiphyte Vanilla phaeantha Rchb.f. (Orchidaceae): a relationship between environment and function.
    de Lima JF; Moreira ASFP
    Naturwissenschaften; 2022 Aug; 109(5):46. PubMed ID: 35997846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive phylogenetic analyses of Orchidaceae using nuclear genes and evolutionary insights into epiphytism.
    Zhang G; Hu Y; Huang MZ; Huang WC; Liu DK; Zhang D; Hu H; Downing JL; Liu ZJ; Ma H
    J Integr Plant Biol; 2023 May; 65(5):1204-1225. PubMed ID: 36738233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-morpho-anatomical mechanisms involve in epiphytic adaptation of micropropagated plants of Vanda tessellata (Roxb.) Hook. ex G. Don.
    Mani M; Rasangam L; Selvam P; Shekhawat MS
    Microsc Res Tech; 2021 Apr; 84(4):712-722. PubMed ID: 33089940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification and adaptive evolution of CesA/Csl superfamily among species with different life forms in Orchidaceae.
    Wang J; Li J; Lin W; Deng B; Lin L; Lv X; Hu Q; Liu K; Fatima M; He B; Qiu D; Ma X
    Front Plant Sci; 2022; 13():994679. PubMed ID: 36247544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root character evolution and systematics in Cranichidinae, Prescottiinae and Spiranthinae (Orchidaceae, Cranichideae).
    Figueroa C; Salazar GA; Zavaleta HA; Engleman EM
    Ann Bot; 2008 Mar; 101(4):509-20. PubMed ID: 18263628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Orchid Velamen: A Model System for Studying Patterned Secondary Cell Wall Development?
    Idris NA; Aleamotuʻa M; McCurdy DW; Collings DA
    Plants (Basel); 2021 Jul; 10(7):. PubMed ID: 34371560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural adaptations of two sympatric epiphytic orchids (Orchidaceae) to a cloudy forest environment in rocky outcrops of Southeast Brazil.
    Moreira AS; Filho JP; Isaias RM
    Rev Biol Trop; 2013 Sep; 61(3):1053-65. PubMed ID: 24027907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orchid mycorrhizal fungi and ascomycetous fungi in epiphytic Vanda falcata roots occupy different niches during growth and development.
    Pujasatria GC; Nishiguchi I; Miura C; Yamato M; Kaminaka H
    Mycorrhiza; 2022 Nov; 32(5-6):481-495. PubMed ID: 35844010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leafless epiphytic orchids share Ceratobasidiaceae mycorrhizal fungi.
    Qin J; Zhang W; Feng JQ; Zhang SB
    Mycorrhiza; 2021 Oct; 31(5):625-635. PubMed ID: 34319462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.