BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28961783)

  • 21. Root photosynthesis prevents hypoxia in the epiphytic orchid
    Brunello L; Polverini E; Lauria G; Landi M; Guidi L; Loreti E; Perata P
    Funct Plant Biol; 2024 Mar; 51():. PubMed ID: 38442921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical composition of cell walls in velamentous roots of epiphytic Orchidaceae.
    Joca TAC; de Oliveira DC; Zotz G; Cardoso JCF; Moreira ASFP
    Protoplasma; 2020 Jan; 257(1):103-118. PubMed ID: 31402407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phylogeny and comparative seed morphology of epiphytic and terrestrial species of Liparis (Orchidaceae) in Japan.
    Tsutsumi C; Yukawa T; Lee NS; Lee CS; Kato M
    J Plant Res; 2007 May; 120(3):405-12. PubMed ID: 17396221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Orchid epiphytes do not receive organic substances from living trees through fungi.
    Eskov AK; Voronina EY; Tedersoo L; Tiunov AV; Manh V; Prilepsky NG; Antipina VA; Elumeeva TG; Abakumov EV; Onipchenko VG
    Mycorrhiza; 2020 Nov; 30(6):697-704. PubMed ID: 32803447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of floral traits on the reproductive success of epiphytic and terrestrial tropical orchids.
    Huda MK; Wilcock CC
    Oecologia; 2008 Jan; 154(4):731-41. PubMed ID: 17960426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Untangling above- and belowground mycorrhizal fungal networks in tropical orchids.
    Leake JR; Cameron DD
    Mol Ecol; 2012 Oct; 21(20):4921-4. PubMed ID: 23057699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Localization of associative cyanobacteria on the roots of epiphytic orchids].
    Tsavkelova EA; Lobakova ES; Kolomeĭtseva GL; Cherdyntseva TA; Netrusov AI
    Mikrobiologiia; 2003; 72(1):99-104. PubMed ID: 12698799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Microbiota of the Orchid rhizoplane].
    Tsavkelova EA; Cherdyntseva TA; Lobakova ES; Kolomeĭtseva GL; Netrusov AI
    Mikrobiologiia; 2001; 70(4):567-73. PubMed ID: 11558285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mycorrhizal specificity differences in epiphytic habitat: three epiphytic orchids harbor distinct ecological and physiological specificity.
    Rammitsu K; Goto M; Yamashita Y; Yukawa T; Ogura-Tsujita Y
    J Plant Res; 2023 Nov; 136(6):803-816. PubMed ID: 37572242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome sequence of Apostasia ramifera provides insights into the adaptive evolution in orchids.
    Zhang W; Zhang G; Zeng P; Zhang Y; Hu H; Liu Z; Cai J
    BMC Genomics; 2021 Jul; 22(1):536. PubMed ID: 34256691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlated evolution of leaf and root anatomic traits in
    Qi Y; Huang JL; Zhang SB
    AoB Plants; 2020 Aug; 12(4):plaa034. PubMed ID: 32818052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age at maturity and diversification in woody angiosperms.
    Verdú M
    Evolution; 2002 Jul; 56(7):1352-61. PubMed ID: 12206237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Are there keystone mycorrhizal fungi associated to tropical epiphytic orchids?
    Cevallos S; Sánchez-Rodríguez A; Decock C; Declerck S; Suárez JP
    Mycorrhiza; 2017 Apr; 27(3):225-232. PubMed ID: 27882467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Apostasia genome and the evolution of orchids.
    Zhang GQ; Liu KW; Li Z; Lohaus R; Hsiao YY; Niu SC; Wang JY; Lin YC; Xu Q; Chen LJ; Yoshida K; Fujiwara S; Wang ZW; Zhang YQ; Mitsuda N; Wang M; Liu GH; Pecoraro L; Huang HX; Xiao XJ; Lin M; Wu XY; Wu WL; Chen YY; Chang SB; Sakamoto S; Ohme-Takagi M; Yagi M; Zeng SJ; Shen CY; Yeh CM; Luo YB; Tsai WC; Van de Peer Y; Liu ZJ
    Nature; 2017 Sep; 549(7672):379-383. PubMed ID: 28902843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids.
    Martos F; Munoz F; Pailler T; Kottke I; Gonneau C; Selosse MA
    Mol Ecol; 2012 Oct; 21(20):5098-109. PubMed ID: 22765763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest.
    Suárez JP; Weiss M; Abele A; Garnica S; Oberwinkler F; Kottke I
    Mycol Res; 2006 Nov; 110(Pt 11):1257-70. PubMed ID: 17081740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae.
    Silvera K; Santiago LS; Cushman JC; Winter K
    Plant Physiol; 2009 Apr; 149(4):1838-47. PubMed ID: 19182098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unidirectional transitions in nectar gain and loss suggest food deception is a stable evolutionary strategy in Epidendrum (Orchidaceae): insights from anatomical and molecular evidence.
    Cardoso-Gustavson P; Saka MN; Pessoa EM; Palma-Silva C; Pinheiro F
    BMC Plant Biol; 2018 Sep; 18(1):179. PubMed ID: 30180799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular evidence supports simultaneous association of the achlorophyllous orchid Chamaegastrodia inverta with ectomycorrhizal Ceratobasidiaceae and Russulaceae.
    Pecoraro L; Wang X; Venturella G; Gao W; Wen T; Gafforov Y; Gupta VK
    BMC Microbiol; 2020 Aug; 20(1):236. PubMed ID: 32746782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostemaceae (river-weeds): a pictorial report at the interface of developmental biology and morphological diversification.
    Rutishauser R
    Ann Bot; 2016 Apr; 117(5):811-32. PubMed ID: 26589968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.