These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28961787)

  • 41. Characterization of a Pseudomonas putida rough variant evolved in a mixed-species biofilm with Acinetobacter sp. strain C6.
    Hansen SK; Haagensen JA; Gjermansen M; Jørgensen TM; Tolker-Nielsen T; Molin S
    J Bacteriol; 2007 Jul; 189(13):4932-43. PubMed ID: 17468252
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms.
    Klausen M; Gjermansen M; Kreft JU; Tolker-Nielsen T
    FEMS Microbiol Lett; 2006 Aug; 261(1):1-11. PubMed ID: 16842351
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biofilm vs. planktonic bacterial mode of growth: which do human macrophages prefer?
    Hernández-Jiménez E; Del Campo R; Toledano V; Vallejo-Cremades MT; Muñoz A; Largo C; Arnalich F; García-Rio F; Cubillos-Zapata C; López-Collazo E
    Biochem Biophys Res Commun; 2013 Nov; 441(4):947-52. PubMed ID: 24239884
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440.
    Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L
    Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pseudomonas putida biofilm dynamics following a single pulse of silver nanoparticles.
    Mallevre F; Fernandes TF; Aspray TJ
    Chemosphere; 2016 Jun; 153():356-64. PubMed ID: 27031799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Responses of biofilm-dwelling ciliate communities to planktonic and benthic resource enrichment.
    Norf H; Arndt H; Weitere M
    Microb Ecol; 2009 May; 57(4):687-700. PubMed ID: 19067032
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of Pseudomonas aeruginosa fatty acid profiles in biofilms and batch planktonic cultures.
    Chao J; Wolfaardt GM; Arts MT
    Can J Microbiol; 2010 Dec; 56(12):1028-39. PubMed ID: 21164573
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Growth of Amoebae and Flagellates on Bacteria Deposited on Filters.
    Zubkov MV; Sleigh MA
    Microb Ecol; 1999 Feb; 37(2):107-115. PubMed ID: 9929399
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Escherichia coli serotype O157:H7 retention on solid surfaces and peroxide resistance is enhanced by dual-strain biofilm formation.
    Uhlich GA; Rogers DP; Mosier DA
    Foodborne Pathog Dis; 2010 Aug; 7(8):935-43. PubMed ID: 20367070
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel approach combining the Calgary Biofilm Device and Phenotype MicroArray for the characterization of the chemical sensitivity of bacterial biofilms.
    Santopolo L; Marchi E; Frediani L; Decorosi F; Viti C; Giovannetti L
    Biofouling; 2012; 28(9):1023-32. PubMed ID: 23004019
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria.
    Roslev P; Larsen MB; Jørgensen D; Hesselsoe M
    J Microbiol Methods; 2004 Dec; 59(3):381-93. PubMed ID: 15488281
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biofilm formation of Pseudomonas putida IsoF: the role of quorum sensing as assessed by proteomics.
    Arevalo-Ferro C; Reil G; Görg A; Eberl L; Riedel K
    Syst Appl Microbiol; 2005 Mar; 28(2):87-114. PubMed ID: 15830802
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative assessment of morphological traits of planktonic bacterial aggregates.
    Espeso DR; Martínez-García E; de Lorenzo V
    Water Res; 2021 Jan; 188():116468. PubMed ID: 33038714
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A model-based approach to detect interspecific interactions during biofilm development.
    Bridier A; Briandet R; Bouchez T; Jabot F
    Biofouling; 2014; 30(7):761-71. PubMed ID: 24963685
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Growth, encystment and survival of Acanthamoeba castellanii grazing on different bacteria.
    de Moraes J; Alfieri SC
    FEMS Microbiol Ecol; 2008 Nov; 66(2):221-9. PubMed ID: 18811648
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. plantarum JCM 1149.
    Kubota H; Senda S; Tokuda H; Uchiyama H; Nomura N
    Food Microbiol; 2009 Sep; 26(6):592-7. PubMed ID: 19527834
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of biomass detachment from biofilms of two different Pseudomonas spp. under constant shear conditions.
    Gazzola G; Habimana O; Murphy CD; Casey E
    Biofouling; 2015; 31(1):13-8. PubMed ID: 25563340
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differences in metabolism between the biofilm and planktonic response to metal stress.
    Booth SC; Workentine ML; Wen J; Shaykhutdinov R; Vogel HJ; Ceri H; Turner RJ; Weljie AM
    J Proteome Res; 2011 Jul; 10(7):3190-9. PubMed ID: 21561166
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism.
    Vital-Lopez FG; Reifman J; Wallqvist A
    PLoS Comput Biol; 2015 Oct; 11(10):e1004452. PubMed ID: 26431398
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains.
    Gugala N; Lemire JA; Turner RJ
    J Antibiot (Tokyo); 2017 Jun; 70(6):775-780. PubMed ID: 28196974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.