BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28961895)

  • 1. HiDi: an efficient reverse engineering schema for large-scale dynamic regulatory network reconstruction using adaptive differentiation.
    Deng Y; Zenil H; Tegnér J; Kiani NA
    Bioinformatics; 2017 Dec; 33(24):3964-3972. PubMed ID: 28961895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis.
    Li Z; Li P; Krishnan A; Liu J
    Bioinformatics; 2011 Oct; 27(19):2686-91. PubMed ID: 21816876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods.
    Schaffter T; Marbach D; Floreano D
    Bioinformatics; 2011 Aug; 27(16):2263-70. PubMed ID: 21697125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inference of gene regulatory networks based on nonlinear ordinary differential equations.
    Ma B; Fang M; Jiao X
    Bioinformatics; 2020 Dec; 36(19):4885-4893. PubMed ID: 31950997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data.
    Huynh-Thu VA; Geurts P
    Sci Rep; 2018 Feb; 8(1):3384. PubMed ID: 29467401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LiPLike: towards gene regulatory network predictions of high certainty.
    Magnusson R; Gustafsson M
    Bioinformatics; 2020 Apr; 36(8):2522-2529. PubMed ID: 31904818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmark problems for dynamic modeling of intracellular processes.
    Hass H; Loos C; Raimúndez-Álvarez E; Timmer J; Hasenauer J; Kreutz C
    Bioinformatics; 2019 Sep; 35(17):3073-3082. PubMed ID: 30624608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information.
    Lachmann A; Giorgi FM; Lopez G; Califano A
    Bioinformatics; 2016 Jul; 32(14):2233-5. PubMed ID: 27153652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Netter: re-ranking gene network inference predictions using structural network properties.
    Ruyssinck J; Demeester P; Dhaene T; Saeys Y
    BMC Bioinformatics; 2016 Feb; 17():76. PubMed ID: 26862054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking regulatory network reconstruction with GRENDEL.
    Haynes BC; Brent MR
    Bioinformatics; 2009 Mar; 25(6):801-7. PubMed ID: 19188190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks.
    Lim N; Senbabaoglu Y; Michailidis G; d'Alché-Buc F
    Bioinformatics; 2013 Jun; 29(11):1416-23. PubMed ID: 23574736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An algebra-based method for inferring gene regulatory networks.
    Vera-Licona P; Jarrah A; Garcia-Puente LD; McGee J; Laubenbacher R
    BMC Syst Biol; 2014 Mar; 8():37. PubMed ID: 24669835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference of gene regulatory networks from time series by Tsallis entropy.
    Lopes FM; de Oliveira EA; Cesar RM
    BMC Syst Biol; 2011 May; 5():61. PubMed ID: 21545720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GREMA: modelling of emulated gene regulatory networks with confidence levels based on evolutionary intelligence to cope with the underdetermined problem.
    Tsai MJ; Wang JR; Ho SJ; Shu LS; Huang WL; Ho SY
    Bioinformatics; 2020 Jun; 36(12):3833-3840. PubMed ID: 32399550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large scale gene regulatory network inference with a multi-level strategy.
    Wu J; Zhao X; Lin Z; Shao Z
    Mol Biosyst; 2016 Feb; 12(2):588-97. PubMed ID: 26687446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse-engineering of gene networks for regulating early blood development from single-cell measurements.
    Wei J; Hu X; Zou X; Tian T
    BMC Med Genomics; 2017 Dec; 10(Suppl 5):72. PubMed ID: 29297370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel constrained genetic algorithm-based Boolean network inference method from steady-state gene expression data.
    Trinh HC; Kwon YK
    Bioinformatics; 2021 Jul; 37(Suppl_1):i383-i391. PubMed ID: 34252959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data.
    Stock M; Popp N; Fiorentino J; Scialdone A
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38627250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ENNET: inferring large gene regulatory networks from expression data using gradient boosting.
    Sławek J; Arodź T
    BMC Syst Biol; 2013 Oct; 7():106. PubMed ID: 24148309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.