These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28961895)

  • 1. HiDi: an efficient reverse engineering schema for large-scale dynamic regulatory network reconstruction using adaptive differentiation.
    Deng Y; Zenil H; Tegnér J; Kiani NA
    Bioinformatics; 2017 Dec; 33(24):3964-3972. PubMed ID: 28961895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis.
    Li Z; Li P; Krishnan A; Liu J
    Bioinformatics; 2011 Oct; 27(19):2686-91. PubMed ID: 21816876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods.
    Schaffter T; Marbach D; Floreano D
    Bioinformatics; 2011 Aug; 27(16):2263-70. PubMed ID: 21697125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inference of gene regulatory networks based on nonlinear ordinary differential equations.
    Ma B; Fang M; Jiao X
    Bioinformatics; 2020 Dec; 36(19):4885-4893. PubMed ID: 31950997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data.
    Huynh-Thu VA; Geurts P
    Sci Rep; 2018 Feb; 8(1):3384. PubMed ID: 29467401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmark problems for dynamic modeling of intracellular processes.
    Hass H; Loos C; Raimúndez-Álvarez E; Timmer J; Hasenauer J; Kreutz C
    Bioinformatics; 2019 Sep; 35(17):3073-3082. PubMed ID: 30624608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information.
    Lachmann A; Giorgi FM; Lopez G; Califano A
    Bioinformatics; 2016 Jul; 32(14):2233-5. PubMed ID: 27153652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Netter: re-ranking gene network inference predictions using structural network properties.
    Ruyssinck J; Demeester P; Dhaene T; Saeys Y
    BMC Bioinformatics; 2016 Feb; 17():76. PubMed ID: 26862054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking regulatory network reconstruction with GRENDEL.
    Haynes BC; Brent MR
    Bioinformatics; 2009 Mar; 25(6):801-7. PubMed ID: 19188190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LiPLike: towards gene regulatory network predictions of high certainty.
    Magnusson R; Gustafsson M
    Bioinformatics; 2020 Apr; 36(8):2522-2529. PubMed ID: 31904818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks.
    Lim N; Senbabaoglu Y; Michailidis G; d'Alché-Buc F
    Bioinformatics; 2013 Jun; 29(11):1416-23. PubMed ID: 23574736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An algebra-based method for inferring gene regulatory networks.
    Vera-Licona P; Jarrah A; Garcia-Puente LD; McGee J; Laubenbacher R
    BMC Syst Biol; 2014 Mar; 8():37. PubMed ID: 24669835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference of gene regulatory networks from time series by Tsallis entropy.
    Lopes FM; de Oliveira EA; Cesar RM
    BMC Syst Biol; 2011 May; 5():61. PubMed ID: 21545720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GREMA: modelling of emulated gene regulatory networks with confidence levels based on evolutionary intelligence to cope with the underdetermined problem.
    Tsai MJ; Wang JR; Ho SJ; Shu LS; Huang WL; Ho SY
    Bioinformatics; 2020 Jun; 36(12):3833-3840. PubMed ID: 32399550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large scale gene regulatory network inference with a multi-level strategy.
    Wu J; Zhao X; Lin Z; Shao Z
    Mol Biosyst; 2016 Feb; 12(2):588-97. PubMed ID: 26687446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel constrained genetic algorithm-based Boolean network inference method from steady-state gene expression data.
    Trinh HC; Kwon YK
    Bioinformatics; 2021 Jul; 37(Suppl_1):i383-i391. PubMed ID: 34252959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse-engineering of gene networks for regulating early blood development from single-cell measurements.
    Wei J; Hu X; Zou X; Tian T
    BMC Med Genomics; 2017 Dec; 10(Suppl 5):72. PubMed ID: 29297370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data.
    Stock M; Popp N; Fiorentino J; Scialdone A
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38627250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ENNET: inferring large gene regulatory networks from expression data using gradient boosting.
    Sławek J; Arodź T
    BMC Syst Biol; 2013 Oct; 7():106. PubMed ID: 24148309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.