BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28961917)

  • 1. Towards clinically more relevant dissection of patient heterogeneity via survival-based Bayesian clustering.
    Ahmad A; Fröhlich H
    Bioinformatics; 2017 Nov; 33(22):3558-3566. PubMed ID: 28961917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust clustering of noisy high-dimensional gene expression data for patients subtyping.
    Coretto P; Serra A; Tagliaferri R
    Bioinformatics; 2018 Dec; 34(23):4064-4072. PubMed ID: 29939219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FREQUENT SUBGRAPH MINING OF PERSONALIZED SIGNALING PATHWAY NETWORKS GROUPS PATIENTS WITH FREQUENTLY DYSREGULATED DISEASE PATHWAYS AND PREDICTS PROGNOSIS.
    Durmaz A; Henderson TAD; Brubaker D; Bebek G
    Pac Symp Biocomput; 2017; 22():402-413. PubMed ID: 27896993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust correlation estimation and UMAP assisted topological analysis of omics data for disease subtyping.
    Rather AA; Chachoo MA
    Comput Biol Med; 2023 Mar; 155():106640. PubMed ID: 36774889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian two-way latent structure model for genomic data integration reveals few pan-genomic cluster subtypes in a breast cancer cohort.
    Swanson DM; Lien T; Bergholtz H; Sørlie T; Frigessi A
    Bioinformatics; 2019 Dec; 35(23):4886-4897. PubMed ID: 31077301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative clustering of multi-level omics data for disease subtype discovery using sequential double regularization.
    Kim S; Oesterreich S; Kim S; Park Y; Tseng GC
    Biostatistics; 2017 Jan; 18(1):165-179. PubMed ID: 27549122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative cancer patient stratification via subspace merging.
    Ding H; Sharpnack M; Wang C; Huang K; Machiraju R
    Bioinformatics; 2019 May; 35(10):1653-1659. PubMed ID: 30329022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies.
    Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA
    Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning subgroup-specific regulatory interactions and regulator independence with PARADIGM.
    Sedgewick AJ; Benz SC; Rabizadeh S; Soon-Shiong P; Vaske CJ
    Bioinformatics; 2013 Jul; 29(13):i62-70. PubMed ID: 23813010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression.
    Ammad-Ud-Din M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2017 Jul; 33(14):i359-i368. PubMed ID: 28881998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian semiparametric factor analysis model for subtype identification.
    Sun J; Warren JL; Zhao H
    Stat Appl Genet Mol Biol; 2017 Apr; 16(2):145-158. PubMed ID: 28343169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous discovery of cancer subtypes and subtype features by molecular data integration.
    Le Van T; van Leeuwen M; Carolina Fierro A; De Maeyer D; Van den Eynden J; Verbeke L; De Raedt L; Marchal K; Nijssen S
    Bioinformatics; 2016 Sep; 32(17):i445-i454. PubMed ID: 27587661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaussian mixture copulas for high-dimensional clustering and dependency-based subtyping.
    Kasa SR; Bhattacharya S; Rajan V
    Bioinformatics; 2020 Jan; 36(2):621-628. PubMed ID: 31368480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bi-EB: Empirical Bayesian Biclustering for Multi-Omics Data Integration Pattern Identification among Species.
    Yazdanparast A; Li L; Zhang C; Cheng L
    Genes (Basel); 2022 Oct; 13(11):. PubMed ID: 36360219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mining heterogeneous causal effects for personalized cancer treatment.
    Zhang W; Le TD; Liu L; Zhou ZH; Li J
    Bioinformatics; 2017 Aug; 33(15):2372-2378. PubMed ID: 28369195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consensus clustering for Bayesian mixture models.
    Coleman S; Kirk PDW; Wallace C
    BMC Bioinformatics; 2022 Jul; 23(1):290. PubMed ID: 35864476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian hierarchical clustering for studying cancer gene expression data with unknown statistics.
    Sirinukunwattana K; Savage RS; Bari MF; Snead DR; Rajpoot NM
    PLoS One; 2013; 8(10):e75748. PubMed ID: 24194826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BAYESIAN BICLUSTERING FOR PATIENT STRATIFICATION.
    Khakabimamaghani S; Ester M
    Pac Symp Biocomput; 2016; 21():345-56. PubMed ID: 26776199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supervised Graph Clustering for Cancer Subtyping Based on Survival Analysis and Integration of Multi-Omic Tumor Data.
    Liu C; Cao W; Wu S; Shen W; Jiang D; Yu Z; Wong HS
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):1193-1202. PubMed ID: 32750893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rarity: discovering rare cell populations from single-cell imaging data.
    Märtens K; Bortolomeazzi M; Montorsi L; Spencer J; Ciccarelli F; Yau C
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38092048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.