BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

30 related articles for article (PubMed ID: 28961989)

  • 1. Interplay among photoreceptors determines the strategy of coping with excess light in tomato.
    Shomali A; Aliniaeifard S; Kamrani YY; Lotfi M; Aghdam MS; Rastogi A; Brestič M
    Plant J; 2024 Jun; 118(5):1423-1438. PubMed ID: 38402588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in SBPase activity influence photosynthetic capacity, growth, and tolerance to chilling stress in transgenic tomato plants.
    Ding F; Wang M; Zhang S; Ai X
    Sci Rep; 2016 Sep; 6():32741. PubMed ID: 27586456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species.
    Haque MS; Kjaer KH; Rosenqvist E; Ottosen CO
    Front Plant Sci; 2015; 6():522. PubMed ID: 26217371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylation proteomics and metabolomics analyses reveal the involvement of starch synthase undergoing acetylation modification during UV-B stress resistance in Rhododendron Chrysanthum Pall.
    Liu M; Sun L; Cao Y; Xu H; Zhou X
    Hereditas; 2024 May; 161(1):15. PubMed ID: 38702800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Extended Light/Dark Cycles on Solanaceae Plants.
    Shibaeva TG; Sherudilo EG; Ikkonen E; Rubaeva AA; Levkin IA; Titov AF
    Plants (Basel); 2024 Jan; 13(2):. PubMed ID: 38256794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diel changes in nitrogen and carbon resource status and use for growth in young plants of tomato (Solanum lycopersicum).
    Huanosto Magaña R; Adamowicz S; Pagès L
    Ann Bot; 2009 May; 103(7):1025-37. PubMed ID: 19258341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential role for phytol kinase and tocopherol in tolerance to combined light and temperature stress in tomato.
    Spicher L; Almeida J; Gutbrod K; Pipitone R; Dörmann P; Glauser G; Rossi M; Kessler F
    J Exp Bot; 2017 Dec; 68(21-22):5845-5856. PubMed ID: 29186558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metatranscriptomic profiles reveal the biotransformation potential of azithromycin in river periphyton.
    Liang J; Li C; Mo J; Iwata H; Rehman F; Song J; Guo J
    Water Res; 2024 Mar; 251():121140. PubMed ID: 38246076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supplemental LED Lighting Effectively Enhances the Yield and Quality of Greenhouse Truss Tomato Production: Results of a Meta-Analysis.
    Appolloni E; Orsini F; Pennisi G; Gabarrell Durany X; Paucek I; Gianquinto G
    Front Plant Sci; 2021; 12():596927. PubMed ID: 33995427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Light Does Not Compromise Growth and Yield in Mini-Cucumber Greenhouse Production with Supplemental LED Light.
    Lanoue J; Zheng J; Little C; Grodzinski B; Hao X
    Plants (Basel); 2021 Feb; 10(2):. PubMed ID: 33671143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternating Red and Blue Light-Emitting Diodes Allows for Injury-Free Tomato Production With Continuous Lighting.
    Lanoue J; Zheng J; Little C; Thibodeau A; Grodzinski B; Hao X
    Front Plant Sci; 2019; 10():1114. PubMed ID: 31572419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome analysis reveals the different compatibility between LAAA × AA and LAAA × LL in
    Yang Y; Zheng W; Xiao K; Wu L; Zeng J; Zhou S
    Breed Sci; 2019 Jun; 69(2):297-307. PubMed ID: 31481839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytochrome A Protects Tomato Plants From Injuries Induced by Continuous Light.
    Velez-Ramirez AI; Vreugdenhil D; Millenaar FF; van Ieperen W
    Front Plant Sci; 2019; 10():19. PubMed ID: 30761166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sucrose and Starch Content Negatively Correlates with PSII Maximum Quantum Efficiency in Tomato (Solanum lycopersicum) Exposed to Abnormal Light/Dark Cycles and Continuous Light.
    Velez-Ramirez AI; Carreño-Quintero N; Vreugdenhil D; Millenaar FF; van Ieperen W
    Plant Cell Physiol; 2017 Aug; 58(8):1339-1349. PubMed ID: 28961989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. 'Micro-Tom') fruits in an ABA- and osmotic stress-independent manner.
    Yin YG; Kobayashi Y; Sanuki A; Kondo S; Fukuda N; Ezura H; Sugaya S; Matsukura C
    J Exp Bot; 2010; 61(2):563-74. PubMed ID: 19995825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whirly1 enhances tolerance to chilling stress in tomato via protection of photosystem II and regulation of starch degradation.
    Zhuang K; Kong F; Zhang S; Meng C; Yang M; Liu Z; Wang Y; Ma N; Meng Q
    New Phytol; 2019 Mar; 221(4):1998-2012. PubMed ID: 30307037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development.
    Sagar M; Chervin C; Mila I; Hao Y; Roustan JP; Benichou M; Gibon Y; Biais B; Maury P; Latché A; Pech JC; Bouzayen M; Zouine M
    Plant Physiol; 2013 Mar; 161(3):1362-74. PubMed ID: 23341361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Down-regulation of tomato PHYTOL KINASE strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner.
    Almeida J; Azevedo Mda S; Spicher L; Glauser G; vom Dorp K; Guyer L; del Valle Carranza A; Asis R; de Souza AP; Buckeridge M; Demarco D; Bres C; Rothan C; Peres LE; Hörtensteiner S; Kessler F; Dörmann P; Carrari F; Rossi M
    J Exp Bot; 2016 Feb; 67(3):919-34. PubMed ID: 26596763
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.