These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 28962533)
1. Observations on AMBER Force Field Performance under the Conditions of Low pH and High Salt Concentrations. Liu H; Tan Q; Han L; Huo S J Phys Chem B; 2017 Oct; 121(42):9838-9847. PubMed ID: 28962533 [TBL] [Abstract][Full Text] [Related]
2. A comparative study of two different force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations. Cao Z; Wang J J Biomol Struct Dyn; 2010 Apr; 27(5):651-61. PubMed ID: 20085382 [TBL] [Abstract][Full Text] [Related]
3. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. Patel S; Mackerell AD; Brooks CL J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394 [TBL] [Abstract][Full Text] [Related]
4. Computer simulation study of the structure of LiCl aqueous solutions: test of non-standard mixing rules in the ion interaction. Aragones JL; Rovere M; Vega C; Gallo P J Phys Chem B; 2014 Jul; 118(28):7680-91. PubMed ID: 24702562 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Aβ Monomers through the Convergence of Ensemble Properties among Simulations with Multiple Force Fields. Rosenman DJ; Wang C; García AE J Phys Chem B; 2016 Jan; 120(2):259-77. PubMed ID: 26562747 [TBL] [Abstract][Full Text] [Related]
6. Assessing the Current State of Amber Force Field Modifications for DNA. Galindo-Murillo R; Robertson JC; Zgarbová M; Šponer J; Otyepka M; Jurečka P; Cheatham TE J Chem Theory Comput; 2016 Aug; 12(8):4114-27. PubMed ID: 27300587 [TBL] [Abstract][Full Text] [Related]
7. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly. Aliev AE; Courtier-Murias D J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228 [TBL] [Abstract][Full Text] [Related]
8. Effects of CMAP and electrostatic cutoffs on the dynamics of an integral membrane protein: the phospholamban study. Houndonougbo Y; Kuczera K; Jas GS J Biomol Struct Dyn; 2008 Aug; 26(1):17-34. PubMed ID: 18533723 [TBL] [Abstract][Full Text] [Related]
9. Direct folding simulation of helical proteins using an effective polarizable bond force field. Duan L; Zhu T; Ji C; Zhang Q; Zhang JZH Phys Chem Chem Phys; 2017 Jun; 19(23):15273-15284. PubMed ID: 28569909 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the strengths of salt bridges in the CutA1 protein using molecular dynamic simulations: a comparison of different force fields. Matsuura Y; Joti Y; Bagautdinov B; Yutani K FEBS Open Bio; 2019 Nov; 9(11):1939-1956. PubMed ID: 31509647 [TBL] [Abstract][Full Text] [Related]
11. Derivation of original RESP atomic partial charges for MD simulations of the LDAO surfactant with AMBER: applications to a model of micelle and a fragment of the lipid kinase PI4KA. Karakas E; Taveneau C; Bressanelli S; Marchi M; Robert B; Abel S J Biomol Struct Dyn; 2017 Jan; 35(1):159-181. PubMed ID: 26998712 [TBL] [Abstract][Full Text] [Related]
12. Examination of the quality of various force fields and solvation models for the equilibrium simulations of GA88 and GB88. Zeng J; Li Y; Zhang JZ; Mei Y J Mol Model; 2016 Aug; 22(8):177. PubMed ID: 27392746 [TBL] [Abstract][Full Text] [Related]
13. Electronic polarization is important in stabilizing the native structures of proteins. Ji CG; Zhang JZ J Phys Chem B; 2009 Dec; 113(49):16059-64. PubMed ID: 19954243 [TBL] [Abstract][Full Text] [Related]
14. The structure and IR signatures of the arginine-glutamate salt bridge. Insights from the classical MD simulations. Vener MV; Odinokov AV; Wehmeyer C; Sebastiani D J Chem Phys; 2015 Jun; 142(21):215106. PubMed ID: 26049530 [TBL] [Abstract][Full Text] [Related]
15. Structural dynamics of the box C/D RNA kink-turn and its complex with proteins: the role of the A-minor 0 interaction, long-residency water bridges, and structural ion-binding sites revealed by molecular simulations. Spacková N; Réblová K; Sponer J J Phys Chem B; 2010 Aug; 114(32):10581-93. PubMed ID: 20701388 [TBL] [Abstract][Full Text] [Related]
16. Molecular simulation study on Hofmeister cations and the aqueous solubility of benzene. Ganguly P; Hajari T; van der Vegt NF J Phys Chem B; 2014 May; 118(20):5331-9. PubMed ID: 24792435 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations. Cino EA; Choy WY; Karttunen M J Chem Theory Comput; 2012 Aug; 8(8):2725-2740. PubMed ID: 22904695 [TBL] [Abstract][Full Text] [Related]
18. Residue-specific force field based on the protein coil library. RSFF1: modification of OPLS-AA/L. Jiang F; Zhou CY; Wu YD J Phys Chem B; 2014 Jun; 118(25):6983-98. PubMed ID: 24815738 [TBL] [Abstract][Full Text] [Related]
19. Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. Im W; Roux B J Mol Biol; 2002 Jun; 319(5):1177-97. PubMed ID: 12079356 [TBL] [Abstract][Full Text] [Related]
20. OPEP6: A New Constant-pH Molecular Dynamics Simulation Scheme with OPEP Coarse-Grained Force Field. Barroso da Silva FL; Sterpone F; Derreumaux P J Chem Theory Comput; 2019 Jun; 15(6):3875-3888. PubMed ID: 31059255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]