These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28962549)

  • 1. A machine learning approach for predicting methionine oxidation sites.
    Aledo JC; Cantón FR; Veredas FJ
    BMC Bioinformatics; 2017 Sep; 18(1):430. PubMed ID: 28962549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MetOSite: an integrated resource for the study of methionine residues sulfoxidation.
    Valverde H; Cantón FR; Aledo JC
    Bioinformatics; 2019 Nov; 35(22):4849-4850. PubMed ID: 31197322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring Methionine Sulfoxidation and serine Phosphorylation crosstalk from Phylogenetic analyses.
    Aledo JC
    BMC Evol Biol; 2017 Jul; 17(1):171. PubMed ID: 28750604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methionine in Proteins: It's Not Just for Protein Initiation Anymore.
    Lim JM; Kim G; Levine RL
    Neurochem Res; 2019 Jan; 44(1):247-257. PubMed ID: 29327308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methionine residues around phosphorylation sites are preferentially oxidized in vivo under stress conditions.
    Veredas FJ; Cantón FR; Aledo JC
    Sci Rep; 2017 Jan; 7():40403. PubMed ID: 28079140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines.
    Bigelow DJ; Squier TC
    Mol Biosyst; 2011 Jul; 7(7):2101-9. PubMed ID: 21594273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulphur Atoms from Methionines Interacting with Aromatic Residues Are Less Prone to Oxidation.
    Aledo JC; Cantón FR; Veredas FJ
    Sci Rep; 2015 Nov; 5():16955. PubMed ID: 26597773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Analysis of in Vivo Methionine Oxidation of the Human Proteome.
    Bettinger JQ; Welle KA; Hryhorenko JR; Ghaemmaghami S
    J Proteome Res; 2020 Feb; 19(2):624-633. PubMed ID: 31801345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methionine oxidation in bacteria: A reversible post-translational modification.
    Vincent MS; Ezraty B
    Mol Microbiol; 2023 Feb; 119(2):143-150. PubMed ID: 36350090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein Methionine Sulfoxide Dynamics in Arabidopsis thaliana under Oxidative Stress.
    Jacques S; Ghesquière B; De Bock PJ; Demol H; Wahni K; Willems P; Messens J; Van Breusegem F; Gevaert K
    Mol Cell Proteomics; 2015 May; 14(5):1217-29. PubMed ID: 25693801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of protein function by reversible methionine oxidation and the role of selenoprotein MsrB1.
    Kaya A; Lee BC; Gladyshev VN
    Antioxid Redox Signal; 2015 Oct; 23(10):814-22. PubMed ID: 26181576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics methods to study methionine oxidation.
    Ghesquière B; Gevaert K
    Mass Spectrom Rev; 2014; 33(2):147-56. PubMed ID: 24178673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation.
    Levine RL; Moskovitz J; Stadtman ER
    IUBMB Life; 2000; 50(4-5):301-7. PubMed ID: 11327324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local flexibility facilitates oxidization of buried methionine residues.
    Xu K; Uversky VN; Xue B
    Protein Pept Lett; 2012 Jun; 19(6):688-97. PubMed ID: 22519542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins.
    Bigelow DJ; Squier TC
    Biochim Biophys Acta; 2005 Jan; 1703(2):121-34. PubMed ID: 15680220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methionine oxidation as a major cause of the functional impairment of oxidized actin.
    Dalle-Donne I; Rossi R; Giustarini D; Gagliano N; Di Simplicio P; Colombo R; Milzani A
    Free Radic Biol Med; 2002 May; 32(9):927-37. PubMed ID: 11978495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. You cannot oxidize what you cannot reach: Oxidative susceptibility of buried methionine residues.
    Kulczyk AW; Leustek T
    J Biol Chem; 2022 May; 298(5):101973. PubMed ID: 35461810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Susceptibility of Protein Methionine Oxidation in Response to Hydrogen Peroxide Treatment-Ex Vivo Versus In Vitro: A Computational Insight.
    Aledo JC; Aledo P
    Antioxidants (Basel); 2020 Oct; 9(10):. PubMed ID: 33066324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.