These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Peng XW; Ren JL; Zhong LX; Sun RC Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695 [TBL] [Abstract][Full Text] [Related]
4. Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Ahola S; Salmi J; Johansson LS; Laine J; Osterberg M Biomacromolecules; 2008 Apr; 9(4):1273-82. PubMed ID: 18307305 [TBL] [Abstract][Full Text] [Related]
5. Binding affinity of family 4 carbohydrate binding module on cellulose films of nanocrystals and nanofibrils. Liu T; Zhang Y; Lu X; Wang P; Zhang X; Tian J; Wang Q; Song J; Jin Y; Xiao H Carbohydr Polym; 2021 Jan; 251():116725. PubMed ID: 33142548 [TBL] [Abstract][Full Text] [Related]
6. Adsorption of bacteria and polycations on model surfaces of cellulose, hemicellulose and wood extractives studied by QCM-D. Leino T; Raulio M; Salkinoja-Salonen M; Stenius P; Laine J Colloids Surf B Biointerfaces; 2011 Aug; 86(1):131-9. PubMed ID: 21507615 [TBL] [Abstract][Full Text] [Related]
7. Correlation between cellulose thin film supramolecular structures and interactions with water. Tammelin T; Abburi R; Gestranius M; Laine C; Setälä H; Österberg M Soft Matter; 2015 Jun; 11(21):4273-82. PubMed ID: 25903294 [TBL] [Abstract][Full Text] [Related]
8. Film formation of ω-aminoalkylcellulose carbamates--a quartz crystal microbalance (QCM) study. Elschner T; Doliška A; Bračič M; Stana-Kleinschek K; Heinze T Carbohydr Polym; 2015 Feb; 116():111-6. PubMed ID: 25458279 [TBL] [Abstract][Full Text] [Related]
9. On the interaction between PEDOT:PSS and cellulose: Adsorption mechanisms and controlling factors. Jain K; Reid MS; Larsson PA; Wågberg L Carbohydr Polym; 2021 May; 260():117818. PubMed ID: 33712162 [TBL] [Abstract][Full Text] [Related]
10. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Nie S; Zhang K; Lin X; Zhang C; Yan D; Liang H; Wang S Carbohydr Polym; 2018 Feb; 181():1136-1142. PubMed ID: 29253942 [TBL] [Abstract][Full Text] [Related]
11. Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring. Kittle JD; Du X; Jiang F; Qian C; Heinze T; Roman M; Esker AR Biomacromolecules; 2011 Aug; 12(8):2881-7. PubMed ID: 21574564 [TBL] [Abstract][Full Text] [Related]
12. Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection. Pirich CL; de Freitas RA; Torresi RM; Picheth GF; Sierakowski MR Biosens Bioelectron; 2017 Jun; 92():47-53. PubMed ID: 28187298 [TBL] [Abstract][Full Text] [Related]
13. Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Ahola S; Turon X; Osterberg M; Laine J; Rojas OJ Langmuir; 2008 Oct; 24(20):11592-9. PubMed ID: 18778090 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic digestion of partially and fully regenerated cellulose model films from trimethylsilyl cellulose. Mohan T; Kargl R; Doliška A; Ehmann HM; Ribitsch V; Stana-Kleinschek K Carbohydr Polym; 2013 Mar; 93(1):191-8. PubMed ID: 23465919 [TBL] [Abstract][Full Text] [Related]
15. The Impact of Surface Charges of Carboxylated Cellulose Nanofibrils on the Water Motions in Hydrated Films. Guccini V; Yu S; Meng Z; Kontturi E; Demmel F; Salazar-Alvarez G Biomacromolecules; 2022 Aug; 23(8):3104-3115. PubMed ID: 35786867 [TBL] [Abstract][Full Text] [Related]
16. Probing adhesion between nanoscale cellulose fibres using AFM lateral force spectroscopy: The effect of hemicelluloses on hydrogen bonding. Dolan GK; Cartwright B; Bonilla MR; Gidley MJ; Stokes JR; Yakubov GE Carbohydr Polym; 2019 Mar; 208():97-107. PubMed ID: 30658836 [TBL] [Abstract][Full Text] [Related]
17. Interactions of endoglucanases with amorphous cellulose films resolved by neutron reflectometry and quartz crystal microbalance with dissipation monitoring. Cheng G; Datta S; Liu Z; Wang C; Murton JK; Brown PA; Jablin MS; Dubey M; Majewski J; Halbert CE; Browning JF; Esker AR; Watson BJ; Zhang H; Hutcheson SW; Huber DL; Sale KL; Simmons BA; Kent MS Langmuir; 2012 Jun; 28(22):8348-58. PubMed ID: 22554348 [TBL] [Abstract][Full Text] [Related]
18. Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study. Kumagai A; Lee SH; Endo T Biomacromolecules; 2013 Jul; 14(7):2420-6. PubMed ID: 23721319 [TBL] [Abstract][Full Text] [Related]
19. Self-organized films from cellulose I Nanofibrils using the layer-by-layer technique. Aulin C; Johansson E; Wågberg L; Lindström T Biomacromolecules; 2010 Apr; 11(4):872-82. PubMed ID: 20196583 [TBL] [Abstract][Full Text] [Related]
20. Bioactive cellulose nanofibrils for specific human IgG binding. Zhang Y; Carbonell RG; Rojas OJ Biomacromolecules; 2013 Dec; 14(12):4161-8. PubMed ID: 24131287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]