These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28962802)

  • 1. Applying short-duration pulses as a mean to enhance volatile organic compounds removal by air sparging.
    Ben Neriah A; Paster A
    J Contam Hydrol; 2017 Oct; 205():96-106. PubMed ID: 28962802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centrifugal study of zone of influence during air-sparging.
    Hu L; Meegoda JN; Du J; Gao S; Wu X
    J Environ Monit; 2011 Sep; 13(9):2443-9. PubMed ID: 21755071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Temporal Changes in Air Injection Rate on Air Sparging Performance Groundwater Remediation.
    Ben Neriah A; Paster A
    Ground Water; 2016 Nov; 54(6):851-860. PubMed ID: 27104886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments.
    Kim H; Ahn D; Annable MD
    J Contam Hydrol; 2016 Jan; 184():25-34. PubMed ID: 26697745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Simulation on remediation of benzene contaminated groundwater by air sparging].
    Fan YL; Jiang L; Zhang D; Zhong MS; Jia XY
    Huan Jing Ke Xue; 2012 Nov; 33(11):3927-34. PubMed ID: 23323427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater.
    Yang X; Beckmann D; Fiorenza S; Niedermeier C
    Environ Sci Technol; 2005 Sep; 39(18):7279-86. PubMed ID: 16201659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill.
    Pleasant S; O'Donnell A; Powell J; Jain P; Townsend T
    Sci Total Environ; 2014 Jul; 485-486():31-40. PubMed ID: 24704954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogeo-chemical impacts of air sparging remediation on a semi-confined aquifer: evidences from field monitoring and modeling.
    Fan W; Yang YS; Lu Y; Du XQ; Zhang GX
    Chemosphere; 2013 Jan; 90(4):1419-26. PubMed ID: 23021385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site 5 air sparging pilot test, Naval Air Station Cecil Field, Jacksonville, Florida.
    Murray WA; Lunardini RC; Ullo FJ; Davidson ME
    J Hazard Mater; 2000 Feb; 72(2-3):121-45. PubMed ID: 10650187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation characteristics of surfactant-enhanced air sparging (SEAS) technology on volatile organic compounds contaminated soil with low permeability.
    Xu L; Yan L; Zha F; Zhu F; Tan X; Kang B; Yang C; Lin Z
    J Contam Hydrol; 2022 Oct; 250():104049. PubMed ID: 35863213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on the groundwater petroleum contaminant remediation by air sparging].
    Wang ZQ; Wu Q; Zou ZG; Chen H; Yang XC; Zhao JC
    Huan Jing Ke Xue; 2007 Apr; 28(4):754-60. PubMed ID: 17639932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging.
    Choi JK; Kim H; Kwon H; Annable MD
    J Contam Hydrol; 2018 Mar; 210():42-49. PubMed ID: 29502850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical modeling of air flow during air sparging remediation.
    Hu L; Wu X; Liu Y; Meegoda JN; Gao S
    Environ Sci Technol; 2010 May; 44(10):3883-8. PubMed ID: 20426462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zone of flow: A new finding on the characteristics of airflow within the zone of influence during air sparging in aquifers.
    Cheng K; Zhang T; Peng K; Feng Y; Liu H; Medawela S
    J Contam Hydrol; 2023 Apr; 255():104165. PubMed ID: 36812705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.
    Kim J; Kim H; Annable MD
    J Contam Hydrol; 2015 Jan; 172():1-9. PubMed ID: 25462638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air sparging remediation of VOCs contaminated low-permeability soil based on pressure gradient control.
    Xu L; Zhu H; Zha F; Kang H; Fang L; Liu J; Tan X; Chu C
    Chemosphere; 2023 Oct; 339():139650. PubMed ID: 37495056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ.
    Piscopo AN; Neupauer RM; Kasprzyk JR
    J Contam Hydrol; 2016 Jul; 190():29-43. PubMed ID: 27153361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive models and airflow distribution associated with the zone of influence (ZOI) during air sparging remediation.
    Song X; Zhao Y; Wang H; Qin C
    Sci Total Environ; 2015 Dec; 537():1-8. PubMed ID: 26278372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of surface tension reduction on VOC removal during surfactant-enhanced air sparging.
    Kim H; Annable MD
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(12):2799-811. PubMed ID: 17114108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in air saturation and air-water interfacial area during surfactant-enhanced air sparging in saturated sand.
    Kim H; Choi KM; Moon JW; Annable MD
    J Contam Hydrol; 2006 Nov; 88(1-2):23-35. PubMed ID: 16872716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.