These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28962802)

  • 21. Electromagnetic waves' effect on airflow during air sparging.
    Farid A; Najafi A; Browning J; Smith EB
    J Contam Hydrol; 2019 Jan; 220():49-58. PubMed ID: 30502064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surfactant-enhanced ozone sparging for removal of organic compounds from sand.
    Kim H; Yang S; Yang H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(5):526-33. PubMed ID: 23383638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Field and numerical analysis of in-situ air sparging: a case study.
    Benner ML; Stanford SM; Lee LS; Mohtar RH
    J Hazard Mater; 2000 Feb; 72(2-3):217-36. PubMed ID: 10650191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of different permeable lenses on nitrobenzene transport during air sparging remediation in heterogeneous porous media.
    Yao M; Bai J; Yang X; Li X; Chang Y; Zhao Y
    Chemosphere; 2022 Jun; 296():134015. PubMed ID: 35182528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study on mechanisms and effect of surfactant-enhanced air sparging.
    Zheng W; Zhao YS; Qin CY; Wang B; Qu ZH
    Water Environ Res; 2010 Nov; 82(11):2258-64. PubMed ID: 21141387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of residual NAPL source removal techniques in 3D metric scale experiments.
    Atteia O; Jousse F; Cohen G; Höhener P
    J Contam Hydrol; 2017 Jul; 202():23-32. PubMed ID: 28528771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aquifer remediation using surfactant-enhanced gas sparging applied to target the contaminant source.
    Cho MY; Oh MS; Annable MD; Kim H
    J Contam Hydrol; 2022 Jun; 248():104002. PubMed ID: 35395442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.
    Reddy KR; Adams JA
    J Hazard Mater; 2000 Feb; 72(2-3):147-65. PubMed ID: 10650188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Remediation of chlorinated solvent plumes using in-situ air sparging--a 2-D laboratory study.
    Adams JA; Reddy KR; Tekola L
    Int J Environ Res Public Health; 2011 Jun; 8(6):2226-39. PubMed ID: 21776228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ treatment of arsenic-contaminated groundwater by air sparging.
    Brunsting JH; McBean EA
    J Contam Hydrol; 2014 Apr; 159():20-35. PubMed ID: 24561624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction.
    Rahbeh ME; Mohtar RH
    J Hazard Mater; 2007 May; 143(1-2):156-70. PubMed ID: 17141413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of system parameters on the physical characteristics of bubbles produced through air sparging.
    Burns SE; Zhang M
    Environ Sci Technol; 2001 Jan; 35(1):204-8. PubMed ID: 11352012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of surfactant-enhanced air sparging in different media.
    Qin CY; Zhao YS; Li LL; Zheng W
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1047-55. PubMed ID: 23573925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using radon-222 as indicator for the evaluation of the efficiency of groundwater remediation by in situ air sparging.
    Schubert M; Schmidt A; Müller K; Weiss H
    J Environ Radioact; 2011 Feb; 102(2):193-9. PubMed ID: 21146260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of NAPL from columns by oxidation, sparging, surfactant and thermal treatment.
    Jousse F; Atteia O; Höhener P; Cohen G
    Chemosphere; 2017 Dec; 188():182-189. PubMed ID: 28886552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A field trial to assess the performance of CO2-supersaturated water injection for residual volatile LNAPL recovery.
    Nelson L; Barker J; Li T; Thomson N; Ioannidis M; Chatzis J
    J Contam Hydrol; 2009 Oct; 109(1-4):82-90. PubMed ID: 19732989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation.
    Sutton PT; Ginn TR
    J Contam Hydrol; 2014 Dec; 171():32-41. PubMed ID: 25461885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of surfactant injection position on the airflow pattern and contaminant removal efficiency of surfactant-enhanced air sparging.
    Xu L; Wang Y; Zha F; Wang Q; Kang B; Yang C; Zhang W; Liu Z
    J Hazard Mater; 2021 Jan; 402():123564. PubMed ID: 33254743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of a horizontal permeable reactive barrier for preventing upward diffusion of volatile organic compounds through the unsaturated zone.
    Mahmoodlu MG; Hassanizadeh SM; Hartog N; Raoof A; van Genuchten MT
    J Environ Manage; 2015 Nov; 163():204-13. PubMed ID: 26321530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increase in volatilization of organic compounds using air sparging through addition in alcohol in a soil-water system.
    Chao HP; Hsieh LC; Tran HN
    J Hazard Mater; 2018 Feb; 344():942-949. PubMed ID: 29197790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.