These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Mitochondrial calcium uptake in organ physiology: from molecular mechanism to animal models. Mammucari C; Raffaello A; Vecellio Reane D; Gherardi G; De Mario A; Rizzuto R Pflugers Arch; 2018 Aug; 470(8):1165-1179. PubMed ID: 29541860 [TBL] [Abstract][Full Text] [Related]
23. Signaling pathways regulating mitochondrial calcium efflux - a commentary on Rozenfeld et al. "Essential role of the mitochondrial Na Cohen HM; Salik O; Elrod JW Cell Calcium; 2023 Jul; 113():102764. PubMed ID: 37271053 [TBL] [Abstract][Full Text] [Related]
24. L-type Ca(2+) channel contributes to alterations in mitochondrial calcium handling in the mdx ventricular myocyte. Viola HM; Davies SM; Filipovska A; Hool LC Am J Physiol Heart Circ Physiol; 2013 Mar; 304(6):H767-75. PubMed ID: 23335798 [TBL] [Abstract][Full Text] [Related]
25. Calcium Signaling and Reactive Oxygen Species in Mitochondria. Bertero E; Maack C Circ Res; 2018 May; 122(10):1460-1478. PubMed ID: 29748369 [TBL] [Abstract][Full Text] [Related]
26. Impaired oxidative metabolism and calcium mishandling underlie cardiac dysfunction in a rat model of post-acute isoproterenol-induced cardiomyopathy. Willis BC; Salazar-Cantú A; Silva-Platas C; Fernández-Sada E; Villegas CA; Rios-Argaiz E; González-Serrano P; Sánchez LA; Guerrero-Beltrán CE; García N; Torre-Amione G; García-Rivas GJ; Altamirano J Am J Physiol Heart Circ Physiol; 2015 Mar; 308(5):H467-77. PubMed ID: 25527782 [TBL] [Abstract][Full Text] [Related]
27. Analysis of cardiac mitochondrial Na+-Ca2+ exchanger kinetics with a biophysical model of mitochondrial Ca2+ handling suggests a 3:1 stoichiometry. Dash RK; Beard DA J Physiol; 2008 Jul; 586(13):3267-85. PubMed ID: 18467367 [TBL] [Abstract][Full Text] [Related]
28. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Cortassa S; Aon MA; Marbán E; Winslow RL; O'Rourke B Biophys J; 2003 Apr; 84(4):2734-55. PubMed ID: 12668482 [TBL] [Abstract][Full Text] [Related]
29. Through modulation of cardiac Ca Larbig R; Reda S; Paar V; Trost A; Leitner J; Weichselbaumer S; Motloch KA; Wernly B; Arrer A; Strauss B; Lichtenauer M; Reitsamer HA; Eckardt L; Seebohm G; Hoppe UC; Motloch LJ Exp Physiol; 2017 Jun; 102(6):650-662. PubMed ID: 28370799 [TBL] [Abstract][Full Text] [Related]
30. Aberrant activity of mitochondrial NCLX is linked to impaired synaptic transmission and is associated with mental retardation. Stavsky A; Stoler O; Kostic M; Katoshevsky T; Assali EA; Savic I; Amitai Y; Prokisch H; Leiz S; Daumer-Haas C; Fleidervish I; Perocchi F; Gitler D; Sekler I Commun Biol; 2021 Jun; 4(1):666. PubMed ID: 34079053 [TBL] [Abstract][Full Text] [Related]
31. Cardioprotective effect of hyperthyroidism on the stunned rat heart during ischaemia-reperfusion: energetics and role of mitochondria. Ragone MI; Bonazzola P; Colareda GA; Consolini AE Exp Physiol; 2015 Jun; 100(6):680-97. PubMed ID: 25854703 [TBL] [Abstract][Full Text] [Related]
32. The mitochondrial Na+-Ca2+ exchanger, NCLX, regulates automaticity of HL-1 cardiomyocytes. Takeuchi A; Kim B; Matsuoka S Sci Rep; 2013 Sep; 3():2766. PubMed ID: 24067497 [TBL] [Abstract][Full Text] [Related]
33. Integration of rapid cytosolic Ca2+ signals by mitochondria in cat ventricular myocytes. Sedova M; Dedkova EN; Blatter LA Am J Physiol Cell Physiol; 2006 Nov; 291(5):C840-50. PubMed ID: 16723510 [TBL] [Abstract][Full Text] [Related]
34. Impaired contractile function and calcium handling in hearts of cardiac-specific calcineurin b1-deficient mice. Schaeffer PJ; Desantiago J; Yang J; Flagg TP; Kovacs A; Weinheimer CJ; Courtois M; Leone TC; Nichols CG; Bers DM; Kelly DP Am J Physiol Heart Circ Physiol; 2009 Oct; 297(4):H1263-73. PubMed ID: 19700627 [TBL] [Abstract][Full Text] [Related]
36. Mitochondrial exchanger NCLX plays a major role in the intracellular Ca2+ signaling, gliotransmission, and proliferation of astrocytes. Parnis J; Montana V; Delgado-Martinez I; Matyash V; Parpura V; Kettenmann H; Sekler I; Nolte C J Neurosci; 2013 Apr; 33(17):7206-19. PubMed ID: 23616530 [TBL] [Abstract][Full Text] [Related]
37. Deficiency of PKD2L1 (TRPP3) Exacerbates Pathological Cardiac Hypertrophy by Augmenting NCX1-Mediated Mitochondrial Calcium Overload. Lu Z; Cui Y; Wei X; Gao P; Zhang H; Wei X; Li Q; Sun F; Yan Z; Zheng H; Yang G; Liu D; Zhu Z Cell Rep; 2018 Aug; 24(6):1639-1652. PubMed ID: 30089272 [TBL] [Abstract][Full Text] [Related]
38. Adverse bioenergetic consequences of Na+-Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes. Kohlhaas M; Maack C Circulation; 2010 Nov; 122(22):2273-80. PubMed ID: 21098439 [TBL] [Abstract][Full Text] [Related]
39. Mitochondrial Ca(2+) Processing by a Unit of Mitochondrial Ca(2+) Uniporter and Na(+)/Ca(2+) Exchanger Supports the Neuronal Ca(2+) Influx via Activated Glutamate Receptors. Strokin M; Reiser G Neurochem Res; 2016 Jun; 41(6):1250-62. PubMed ID: 26842930 [TBL] [Abstract][Full Text] [Related]
40. Life after the birth of the mitochondrial Na+/Ca2+ exchanger, NCLX. Nita LI; Hershfinkel M; Sekler I Sci China Life Sci; 2015 Jan; 58(1):59-65. PubMed ID: 25576453 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]