BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 28962904)

  • 1. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy.
    Vasconcelos L; Lehto T; Madani F; Radoi V; Hällbrink M; Vukojević V; Langel Ü
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):491-504. PubMed ID: 28962904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
    Walrant A; Cardon S; Burlina F; Sagan S
    Acc Chem Res; 2017 Dec; 50(12):2968-2975. PubMed ID: 29172443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and characterization of a new peptide vector for short interfering RNA delivery.
    Chen B; Xu W; Pan R; Chen P
    J Nanobiotechnology; 2015 Jun; 13():39. PubMed ID: 26054932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide vectors for the nonviral delivery of nucleic acids.
    Hoyer J; Neundorf I
    Acc Chem Res; 2012 Jul; 45(7):1048-56. PubMed ID: 22455499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to evaluate the cellular uptake of CPPs with fluorescence techniques: Dissecting methodological pitfalls associated to tryptophan-rich peptides.
    Seisel Q; Pelletier F; Deshayes S; Boisguerin P
    Biochim Biophys Acta Biomembr; 2019 Sep; 1861(9):1533-1545. PubMed ID: 31283917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of a series of novel amphipathic cell-penetrating peptides.
    Regberg J; Srimanee A; Erlandsson M; Sillard R; Dobchev DA; Karelson M; Langel U
    Int J Pharm; 2014 Apr; 464(1-2):111-6. PubMed ID: 24463071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of amphipathic CPPs with model membranes.
    Deshayes S; Konate K; Aldrian G; Heitz F; Divita G
    Methods Mol Biol; 2011; 683():41-56. PubMed ID: 21053121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity?
    Jobin ML; Alves ID
    Biochimie; 2014 Dec; 107 Pt A():154-9. PubMed ID: 25107405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy.
    Mo RH; Zaro JL; Shen WC
    Mol Pharm; 2012 Feb; 9(2):299-309. PubMed ID: 22171592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When cationic cell-penetrating peptides meet hydrocarbons to enhance in-cell cargo delivery.
    Di Pisa M; Chassaing G; Swiecicki JM
    J Pept Sci; 2015 May; 21(5):356-69. PubMed ID: 25787823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scavenger receptor-mediated uptake of cell-penetrating peptide nanocomplexes with oligonucleotides.
    Ezzat K; Helmfors H; Tudoran O; Juks C; Lindberg S; Padari K; El-Andaloussi S; Pooga M; Langel U
    FASEB J; 2012 Mar; 26(3):1172-80. PubMed ID: 22138034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of autophagy in cell-penetrating peptide transfection model.
    Dowaidar M; Gestin M; Cerrato CP; Jafferali MH; Margus H; Kivistik PA; Ezzat K; Hallberg E; Pooga M; Hällbrink M; Langel Ü
    Sci Rep; 2017 Oct; 7(1):12635. PubMed ID: 28974718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new amphipathic, amino-acid-pairing (AAP) peptide as siRNA delivery carrier: physicochemical characterization and in vitro uptake.
    Jafari M; Xu W; Naahidi S; Chen B; Chen P
    J Phys Chem B; 2012 Nov; 116(44):13183-91. PubMed ID: 23077976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. siRNA delivery using amphipathic cell-penetrating peptides into human hepatoma cells.
    Furukawa K; Tanaka M; Oba M
    Bioorg Med Chem; 2020 Apr; 28(8):115402. PubMed ID: 32146061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-penetrating peptides for siRNA delivery to glioblastomas.
    Srimanee A; Arvanitidou M; Kim K; Hällbrink M; Langel Ü
    Peptides; 2018 Jun; 104():62-69. PubMed ID: 29684592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous membrane-translocating peptides: influence of peptide self-aggregation and cargo polarity.
    Macchi S; Signore G; Boccardi C; Di Rienzo C; Beltram F; Cardarelli F
    Sci Rep; 2015 Nov; 5():16914. PubMed ID: 26567719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides.
    Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID
    Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying molecular partition of cell-penetrating peptide-cargo supramolecular complexes into lipid membranes: optimizing peptide-based drug delivery systems.
    Freire JM; Veiga AS; de la Torre BG; Andreu D; Castanho MA
    J Pept Sci; 2013 Apr; 19(4):182-9. PubMed ID: 23322613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of lipid interactions with cell-penetrating peptides.
    Sauder R; Seelig J; Ziegler A
    Methods Mol Biol; 2011; 683():129-55. PubMed ID: 21053127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-responsive PepFect cell-penetrating peptides.
    Regberg J; Vasconcelos L; Madani F; Langel Ü; Hällbrink M
    Int J Pharm; 2016 Mar; 501(1-2):32-8. PubMed ID: 26821060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.