BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28963468)

  • 1. Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction.
    Kim JH; Lee C; Lee M; Wang H; Kim K; Park SJ; Yoon I; Jang J; Zhao H; Kim HK; Kwon NH; Jeong SJ; Yoo HC; Kim JH; Yang JS; Lee MY; Lee CW; Yun J; Oh SJ; Kang JS; Martinis SA; Hwang KY; Guo M; Han G; Han JM; Kim S
    Nat Commun; 2017 Sep; 8(1):732. PubMed ID: 28963468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway.
    Lee M; Kim JH; Yoon I; Lee C; Fallahi Sichani M; Kang JS; Kang J; Guo M; Lee KY; Han G; Kim S; Han JM
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):E5279-E5288. PubMed ID: 29784813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leucine-induced localization of Leucyl-tRNA synthetase in lysosome membrane.
    Choi H; Son JB; Kang J; Kwon J; Kim JH; Jung M; Kim SK; Kim S; Mun JY
    Biochem Biophys Res Commun; 2017 Nov; 493(2):1129-1135. PubMed ID: 28882589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based modification of pyrazolone derivatives to inhibit mTORC1 by targeting the leucyl-tRNA synthetase-RagD interaction.
    Kim JH; Jung K; Lee C; Song D; Kim K; Yoo HC; Park SJ; Kang JS; Lee KR; Kim S; Han JM; Han G
    Bioorg Chem; 2021 Jul; 112():104907. PubMed ID: 33979735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-activity relationship of leucyladenylate sulfamate analogues as leucyl-tRNA synthetase (LRS)-targeting inhibitors of Mammalian target of rapamycin complex 1 (mTORC1).
    Yoon S; Kim SE; Kim JH; Yoon I; Tran PT; Ann J; Kim C; Byun WS; Lee S; Kim S; Lee J; Lee J
    Bioorg Med Chem; 2019 Mar; 27(6):1099-1109. PubMed ID: 30755350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of novel leucyladenylate sulfamate surrogates as leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors.
    Yoon S; Zuo D; Kim JH; Yoon I; Ann J; Kim SE; Cho D; Kim WK; Lee S; Lee J; Kim S; Lee J
    Bioorg Med Chem; 2018 Aug; 26(14):4073-4079. PubMed ID: 30041947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leucyl-tRNA Synthetase Activates Vps34 in Amino Acid-Sensing mTORC1 Signaling.
    Yoon MS; Son K; Arauz E; Han JM; Kim S; Chen J
    Cell Rep; 2016 Aug; 16(6):1510-1517. PubMed ID: 27477288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of Leucyladenylate Sulfamates as Novel Leucyl-tRNA Synthetase (LRS)-Targeted Mammalian Target of Rapamycin Complex 1 (mTORC1) Inhibitors.
    Yoon S; Kim JH; Kim SE; Kim C; Tran PT; Ann J; Koh Y; Jang J; Kim S; Moon HS; Kim WK; Lee S; Lee J; Kim S; Lee J
    J Med Chem; 2016 Nov; 59(22):10322-10328. PubMed ID: 27933890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway.
    Han JM; Jeong SJ; Park MC; Kim G; Kwon NH; Kim HK; Ha SH; Ryu SH; Kim S
    Cell; 2012 Apr; 149(2):410-24. PubMed ID: 22424946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of simplified leucyladenylate sulfamates as novel leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors.
    Yoon S; Kim JH; Koh Y; Tran PT; Ann J; Yoon I; Jang J; Kim WK; Lee S; Lee J; Kim S; Lee J
    Bioorg Med Chem; 2017 Aug; 25(15):4145-4152. PubMed ID: 28625715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leucine-sensing mechanism of leucyl-tRNA synthetase 1 for mTORC1 activation.
    Kim S; Yoon I; Son J; Park J; Kim K; Lee JH; Park SY; Kang BS; Han JM; Hwang KY; Kim S
    Cell Rep; 2021 Apr; 35(4):109031. PubMed ID: 33910001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nontranslational function of leucyl-tRNA synthetase regulates myogenic differentiation and skeletal muscle regeneration.
    Son K; You JS; Yoon MS; Dai C; Kim JH; Khanna N; Banerjee A; Martinis SA; Han G; Han JM; Kim S; Chen J
    J Clin Invest; 2019 Apr; 129(5):2088-2093. PubMed ID: 30985292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of (S)-4-isobutyloxazolidin-2-one as a novel leucyl-tRNA synthetase (LRS)-targeted mTORC1 inhibitor.
    Yoon S; Kim JH; Yoon I; Kim C; Kim SE; Koh Y; Jeong SJ; Lee J; Kim S; Lee J
    Bioorg Med Chem Lett; 2016 Jul; 26(13):3038-3041. PubMed ID: 27209231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PHD1 controls muscle mTORC1 in a hydroxylation-independent manner by stabilizing leucyl tRNA synthetase.
    D'Hulst G; Soro-Arnaiz I; Masschelein E; Veys K; Fitzgerald G; Smeuninx B; Kim S; Deldicque L; Blaauw B; Carmeliet P; Breen L; Koivunen P; Zhao SM; De Bock K
    Nat Commun; 2020 Jan; 11(1):174. PubMed ID: 31924757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling.
    Wang X; Fonseca BD; Tang H; Liu R; Elia A; Clemens MJ; Bommer UA; Proud CG
    J Biol Chem; 2008 Nov; 283(45):30482-92. PubMed ID: 18676370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a comprehensive solution aimed to disrupt LARS1/RagD protein-protein interaction.
    Raevsky A; Kovalenko O; Bulgakov E; Sharifi M; Volochnyuk D; Tukalo M
    J Biomol Struct Dyn; 2024; 42(2):747-758. PubMed ID: 36995308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acids and RagD potentiate mTORC1 activation in CD8
    Zhang Y; Hu H; Liu W; Yan SM; Li Y; Tan L; Chen Y; Liu J; Peng Z; Yuan Y; Huang W; Yu F; He X; Li B; Zhang H
    J Immunother Cancer; 2021 Apr; 9(4):. PubMed ID: 33883257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. O-GlcNAc modification of leucyl-tRNA synthetase 1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine.
    Kim K; Yoo HC; Kim BG; Kim S; Sung Y; Yoon I; Yu YC; Park SJ; Kim JH; Myung K; Hwang KY; Kim S; Han JM
    Nat Commun; 2022 May; 13(1):2904. PubMed ID: 35614056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1.
    Yoon I; Nam M; Kim HK; Moon HS; Kim S; Jang J; Song JA; Jeong SJ; Kim SB; Cho S; Kim Y; Lee J; Yang WS; Yoo HC; Kim K; Kim MS; Yang A; Cho K; Park HS; Hwang GS; Hwang KY; Han JM; Kim JH; Kim S
    Science; 2020 Jan; 367(6474):205-210. PubMed ID: 31780625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LRRK2 impairs autophagy by mediating phosphorylation of leucyl-tRNA synthetase.
    Ho DH; Kim H; Nam D; Sim H; Kim J; Kim HG; Son I; Seol W
    Cell Biochem Funct; 2018 Dec; 36(8):431-442. PubMed ID: 30411383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.