These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28963484)

  • 1. Understanding the differences of the ligand binding/unbinding pathways between phosphorylated and non-phosphorylated ARH1 using molecular dynamics simulations.
    Zhu J; Lv Y; Han X; Xu D; Han W
    Sci Rep; 2017 Sep; 7(1):12439. PubMed ID: 28963484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.
    Mashimo M; Kato J; Moss J
    DNA Repair (Amst); 2014 Nov; 23():88-94. PubMed ID: 24746921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ARH Family of ADP-Ribose-Acceptor Hydrolases.
    Ishiwata-Endo H; Kato J; Yamashita S; Chea C; Koike K; Lee DY; Moss J
    Cells; 2022 Nov; 11(23):. PubMed ID: 36497109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced sensitivity to cholera toxin in female ADP-ribosylarginine hydrolase (ARH1)-deficient mice.
    Watanabe K; Kato J; Zhu J; Oda H; Ishiwata-Endo H; Moss J
    PLoS One; 2018; 13(11):e0207693. PubMed ID: 30500844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADP-ribosylarginine hydrolase regulates cell proliferation and tumorigenesis.
    Kato J; Zhu J; Liu C; Stylianou M; Hoffmann V; Lizak MJ; Glasgow CG; Moss J
    Cancer Res; 2011 Aug; 71(15):5327-35. PubMed ID: 21697277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging roles of ADP-ribosyl-acceptor hydrolases (ARHs) in tumorigenesis and cell death pathways.
    Bu X; Kato J; Moss J
    Biochem Pharmacol; 2019 Sep; 167():44-49. PubMed ID: 30267646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mono-ADP-Ribosylhydrolase Assays.
    Abplanalp J; Hopp AK; Hottiger MO
    Methods Mol Biol; 2018; 1813():205-213. PubMed ID: 30097869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Role of ADP-Ribosyl-Acceptor Hydrolase 3 in poly(ADP-Ribose) Polymerase-1 Response to Oxidative Stress.
    Mashimo M; Moss J
    Curr Protein Pept Sci; 2016; 17(7):633-640. PubMed ID: 27090906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (ADP-ribosyl)hydrolases: Structural Basis for Differential Substrate Recognition and Inhibition.
    Rack JGM; Ariza A; Drown BS; Henfrey C; Bartlett E; Shirai T; Hergenrother PJ; Ahel I
    Cell Chem Biol; 2018 Dec; 25(12):1533-1546.e12. PubMed ID: 30472116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ARH and Macrodomain Families of α-ADP-ribose-acceptor Hydrolases Catalyze α-NAD
    Stevens LA; Kato J; Kasamatsu A; Oda H; Lee DY; Moss J
    ACS Chem Biol; 2019 Dec; 14(12):2576-2584. PubMed ID: 31599159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ARH1 in Health and Disease.
    Ishiwata-Endo H; Kato J; Stevens LA; Moss J
    Cancers (Basel); 2020 Feb; 12(2):. PubMed ID: 32092898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADP-Ribosyl-Acceptor Hydrolase Activities Catalyzed by the ARH Family of Proteins.
    Mashimo M; Moss J
    Methods Mol Biol; 2018; 1813():187-204. PubMed ID: 30097868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Players in ADP-ribosylation: Readers and Erasers.
    Verheugd P; Bütepage M; Eckei L; Lüscher B
    Curr Protein Pept Sci; 2016; 17(7):654-667. PubMed ID: 27090904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolysis of O-acetyl-ADP-ribose isomers by ADP-ribosylhydrolase 3.
    Kasamatsu A; Nakao M; Smith BC; Comstock LR; Ono T; Kato J; Denu JM; Moss J
    J Biol Chem; 2011 Jun; 286(24):21110-7. PubMed ID: 21498885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains.
    Forst AH; Karlberg T; Herzog N; Thorsell AG; Gross A; Feijs KL; Verheugd P; Kursula P; Nijmeijer B; Kremmer E; Kleine H; Ladurner AG; Schüler H; Lüscher B
    Structure; 2013 Mar; 21(3):462-75. PubMed ID: 23473667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function analyses reveal the mechanism of the ARH3-dependent hydrolysis of ADP-ribosylation.
    Wang M; Yuan Z; Xie R; Ma Y; Liu X; Yu X
    J Biol Chem; 2018 Sep; 293(37):14470-14480. PubMed ID: 30045870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Af1521 improves ADP-ribose binding and identification of ADP-ribosylated proteins.
    Nowak K; Rosenthal F; Karlberg T; Bütepage M; Thorsell AG; Dreier B; Grossmann J; Sobek J; Imhof R; Lüscher B; Schüler H; Plückthun A; Leslie Pedrioli DM; Hottiger MO
    Nat Commun; 2020 Oct; 11(1):5199. PubMed ID: 33060572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADP-ribosylation of arginine.
    Laing S; Unger M; Koch-Nolte F; Haag F
    Amino Acids; 2011 Jul; 41(2):257-69. PubMed ID: 20652610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular insight into the specific binding of ADP-ribose to the nsP3 macro domains of chikungunya and Venezuelan equine encephalitis viruses: molecular dynamics simulations and free energy calculations.
    Rungrotmongkol T; Nunthaboot N; Malaisree M; Kaiyawet N; Yotmanee P; Meeprasert A; Hannongbua S
    J Mol Graph Model; 2010 Nov; 29(3):347-53. PubMed ID: 21036084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of human ADP-ribosyl-acceptor hydrolase 3 bound to ADP-ribose reveals a conformational switch that enables specific substrate recognition.
    Pourfarjam Y; Ventura J; Kurinov I; Cho A; Moss J; Kim IK
    J Biol Chem; 2018 Aug; 293(32):12350-12359. PubMed ID: 29907568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.