These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28963963)

  • 1. Electrophysiological investigation of human embryonic stem cell derived neurospheres using a novel spike detection algorithm.
    Mayer M; Arrizabalaga O; Lieb F; Ciba M; Ritter S; Thielemann C
    Biosens Bioelectron; 2018 Feb; 100():462-468. PubMed ID: 28963963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel in vitro assay to investigate radiation induced changes in the functionality of human embryonic stem cell-derived neurospheres.
    Mayer M; Arrizabalaga O; Ciba M; Schroeder IS; Ritter S; Thielemann C
    Neurotoxicology; 2020 Jul; 79():40-47. PubMed ID: 32320710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.
    Heikkilä TJ; Ylä-Outinen L; Tanskanen JM; Lappalainen RS; Skottman H; Suuronen R; Mikkonen JE; Hyttinen JA; Narkilahti S
    Exp Neurol; 2009 Jul; 218(1):109-16. PubMed ID: 19393237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays.
    Krause G; Lehmann S; Lehmann M; Freund I; Schreiber E; Baumann W
    Biosens Bioelectron; 2006 Jan; 21(7):1272-82. PubMed ID: 16006112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive detection of electrophysiology and dopamine vesicular exocytosis of hESC-derived dopaminergic neurons using multifunctional microelectrode array.
    He E; Zhou Y; Luo J; Xu S; Zhang K; Song Y; Wang M; Xu S; Dai Y; Yang G; Xie J; Xu Z; Zhu W; Deng Y; Xu Q; Cai X
    Biosens Bioelectron; 2022 Aug; 209():114263. PubMed ID: 35483214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and pharmacological modulation of embryonic stem cell-derived neuronal network activity.
    Illes S; Fleischer W; Siebler M; Hartung HP; Dihné M
    Exp Neurol; 2007 Sep; 207(1):171-6. PubMed ID: 17644089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in Human Stem Cell-Derived Neuronal Cell Culturing and Analysis.
    Ylä-Outinen L; Tanskanen JMA; Kapucu FE; Hyysalo A; Hyttinen JAK; Narkilahti S
    Adv Neurobiol; 2019; 22():299-329. PubMed ID: 31073942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of a spike detection and classification algorithm aimed at implementation on hardware devices.
    Biffi E; Ghezzi D; Pedrocchi A; Ferrigno G
    Comput Intell Neurosci; 2010; 2010():659050. PubMed ID: 20300592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passaged neural stem cell-derived neuronal networks for a portable biosensor.
    O'Shaughnessy TJ; Liu JL; Ma W
    Biosens Bioelectron; 2009 Apr; 24(8):2365-70. PubMed ID: 19162463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips.
    Morin F; Nishimura N; Griscom L; Lepioufle B; Fujita H; Takamura Y; Tamiya E
    Biosens Bioelectron; 2006 Jan; 21(7):1093-100. PubMed ID: 15961304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro.
    Xiang G; Pan L; Huang L; Yu Z; Song X; Cheng J; Xing W; Zhou Y
    Biosens Bioelectron; 2007 May; 22(11):2478-84. PubMed ID: 17071071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell culture chamber with gas supply for prolonged recording of human neuronal cells on microelectrode array.
    Kreutzer J; Ylä-Outinen L; Mäki AJ; Ristola M; Narkilahti S; Kallio P
    J Neurosci Methods; 2017 Mar; 280():27-35. PubMed ID: 28161299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro cortical neuronal networks as a new high-sensitive system for biosensing applications.
    Martinoia S; Bonzano L; Chiappalone M; Tedesco M; Marcoli M; Maura G
    Biosens Bioelectron; 2005 Apr; 20(10):2071-8. PubMed ID: 15741077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Microfluidic Technology to Monitor the Differentiation and Migration of Human ESC-Derived Neural Cells.
    Bae J; Lee N; Choi W; Lee S; Ko JJ; Han BS; Lee SC; Jeon NL; Song J
    Methods Mol Biol; 2016; 1502():223-35. PubMed ID: 27062598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint analysis of extracellular spike waveforms and neuronal network bursts.
    Kapucu FE; Mäkinen ME; Tanskanen JMA; Ylä-Outinen L; Narkilahti S; Hyttinen JAK
    J Neurosci Methods; 2016 Feb; 259():143-155. PubMed ID: 26675487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-wide integration of stem cell-derived neurons and mouse cortical neurons using microfabricated co-culture devices.
    Takayama Y; Moriguchi H; Kotani K; Suzuki T; Mabuchi K; Jimbo Y
    Biosystems; 2012 Jan; 107(1):1-8. PubMed ID: 21872639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells.
    Alshawaf AJ; Viventi S; Qiu W; D'Abaco G; Nayagam B; Erlichster M; Chana G; Everall I; Ivanusic J; Skafidas E; Dottori M
    Sci Rep; 2018 Jan; 8(1):603. PubMed ID: 29330377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonging life in chick forebrain-neuron culture and acquiring spontaneous spiking activity on a microelectrode array.
    Kuang SY; Wang Z; Huang T; Wei L; Xi T; Kindy M; Gao BZ
    Biotechnol Lett; 2015 Mar; 37(3):499-509. PubMed ID: 25344105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel automated spike sorting algorithm with adaptable feature extraction.
    Bestel R; Daus AW; Thielemann C
    J Neurosci Methods; 2012 Oct; 211(1):168-78. PubMed ID: 22951122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multielectrode Array (MEA)-Based Detection of Spontaneous Network Activity in Human iPSC-Derived Cortical Neurons.
    Kizner V; Fischer S; Naujock M
    Methods Mol Biol; 2019; 1994():209-216. PubMed ID: 31124118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.