BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28963977)

  • 1. Removal of heavy metal from sludge by the combined application of a biodegradable biosurfactant and complexing agent in enhanced electrokinetic treatment.
    Tang J; He J; Liu T; Xin X; Hu H
    Chemosphere; 2017 Dec; 189():599-608. PubMed ID: 28963977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled with EDDS and approaching anode technique enhanced electrokinetic remediation removal heavy metal from sludge.
    Tang J; Qiu Z; Tang H; Wang H; Sima W; Liang C; Liao Y; Li Z; Wan S; Dong J
    Environ Pollut; 2021 Mar; 272():115975. PubMed ID: 33168374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal removal from sludge with organic chelators: Comparative study of N, N-bis(carboxymethyl) glutamic acid and citric acid.
    Suanon F; Sun Q; Dimon B; Mama D; Yu CP
    J Environ Manage; 2016 Jan; 166():341-7. PubMed ID: 26520041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA.
    Wu Q; Cui Y; Li Q; Sun J
    J Hazard Mater; 2015; 283():748-54. PubMed ID: 25464318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal removal from contaminated sludge for land application: a review.
    Babel S; del Mundo Dacera D
    Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic enhancement removal of heavy metals from industrial wastewater sludge.
    Yuan C; Weng CH
    Chemosphere; 2006 Sep; 65(1):88-96. PubMed ID: 16643980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of electrokinetic removal of heavy metals from sewage sludge.
    Wang JY; Zhang DS; Stabnikova O; Tay JH
    J Hazard Mater; 2005 Sep; 124(1-3):139-46. PubMed ID: 15994006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metals removal from sewage sludge with mixed chelators of N, N-bis(carboxymethyl) glutamic acid and citric acid.
    Guo X; Chen Y; Han W; Wang L; Gao L; Zhang G; He Q
    Environ Technol; 2022 Jan; 43(2):255-263. PubMed ID: 32544022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Extraction of Heavy Metals from Sludge Using Biodegradable Chelating Agent N,N-bis(carboxymethyl) Glutamic Acid Tetrasodium].
    Wu Q; Cui YR; Tang XX; Yang HJ; Sun JH
    Huan Jing Ke Xue; 2015 May; 36(5):1733-8. PubMed ID: 26314124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metal removal and speciation transformation through the calcination treatment of phosphorus-enriched sewage sludge ash.
    Li R; Zhao W; Li Y; Wang W; Zhu X
    J Hazard Mater; 2015; 283():423-31. PubMed ID: 25464279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge.
    Xu Y; Zhang C; Zhao M; Rong H; Zhang K; Chen Q
    Chemosphere; 2017 Feb; 168():1152-1157. PubMed ID: 27806888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total concentrations and fractions of Cd, Cr, Pb, Cu, Ni and Zn in sewage sludge from municipal and industrial wastewater treatment plants.
    Wang C; Hu X; Chen ML; Wu YH
    J Hazard Mater; 2005 Mar; 119(1-3):245-9. PubMed ID: 15752872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of electrokinetic treatment of contaminated sludge on migration and transformation of Cd, Ni and Zn in various bonding states.
    Gao J; Luo QS; Zhu J; Zhang CB; Li BZ
    Chemosphere; 2013 Nov; 93(11):2869-76. PubMed ID: 24080010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing dewatered sewage sludge using electrokinetic technology.
    Wang JY; Zhang DS; Stabnikova O; Tay JH
    Water Sci Technol; 2004; 50(9):205-11. PubMed ID: 15581014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot scale study on the ex situ electrokinetic removal of heavy metals from municipal wastewater sludges.
    Kim SO; Moon SH; Kim KW; Yun ST
    Water Res; 2002 Nov; 36(19):4765-74. PubMed ID: 12448519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Evaluation of the Combined Removal of Heavy Metals by Saponin and Citric Acid from Municipal Sewage Sludges and Metal Stability Features].
    Ye T; Huang L; Zhang KQ; Zhang B; Chang H; Liu ZJ; Du LZ
    Huan Jing Ke Xue; 2017 Nov; 38(11):4850-4859. PubMed ID: 29965432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of extractable fractions of heavy metals in sludge during the wastewater treatment process.
    Wang C; Li XC; Ma HT; Qian J; Zhai JB
    J Hazard Mater; 2006 Oct; 137(3):1277-83. PubMed ID: 16716500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling heavy metal uptake by sludge particulates in the presence of dissolved organic matter.
    Wang J; Huang CP; Allen HE
    Water Res; 2003 Dec; 37(20):4835-42. PubMed ID: 14604629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of chlorine on the volatilization of heavy metals during the co-combustion of sewage sludge.
    Yu S; Zhang B; Wei J; Zhang T; Yu Q; Zhang W
    Waste Manag; 2017 Apr; 62():204-210. PubMed ID: 28283225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes.
    Del Mundo Dacera D; Babel S
    Bioresour Technol; 2008 Apr; 99(6):1682-9. PubMed ID: 17512728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.