These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 28964067)

  • 1. Predicting the quality of enhanced wideband speech with a cochlear model.
    Wirtzfeld MR; Pourmand N; Parsa V; Bruce IC
    J Acoust Soc Am; 2017 Sep; 142(3):EL319. PubMed ID: 28964067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceptual and Model-Based Evaluation of Ideal Time-Frequency Noise Reduction in Hearing-Impaired Listeners.
    Koning R; Bruce IC; Denys S; Wouters J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):687-697. PubMed ID: 29522412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speech intelligibility is best predicted by intensity, not cochlea-scaled entropy.
    Oxenham AJ; Boucher JE; Kreft HA
    J Acoust Soc Am; 2017 Sep; 142(3):EL264. PubMed ID: 28964094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perceptual relevance of the temporal envelope to the speech signal in the 4-7 kHz band.
    Kim KT; Choi JY; Kang HG
    J Acoust Soc Am; 2007 Sep; 122(3):EL88. PubMed ID: 17927313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech Categorization Reveals the Role of Early-Stage Temporal-Coherence Processing in Auditory Scene Analysis.
    Viswanathan V; Shinn-Cunningham BG; Heinz MG
    J Neurosci; 2022 Jan; 42(2):240-254. PubMed ID: 34764159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Psychophysiological analyses demonstrate the importance of neural envelope coding for speech perception in noise.
    Swaminathan J; Heinz MG
    J Neurosci; 2012 Feb; 32(5):1747-56. PubMed ID: 22302814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing Binaural Pre-processing Strategies I: Instrumental Evaluation.
    Baumgärtel RM; Krawczyk-Becker M; Marquardt D; Völker C; Hu H; Herzke T; Coleman G; Adiloğlu K; Ernst SM; Gerkmann T; Doclo S; Kollmeier B; Hohmann V; Dietz M
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A composite model of the auditory periphery for simulating responses to complex sounds.
    Robert A; Eriksson JL
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):1852-64. PubMed ID: 10530011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectro-temporal modulation energy based mask for robust speaker identification.
    Chi TS; Lin TH; Hsu CC
    J Acoust Soc Am; 2012 May; 131(5):EL368-74. PubMed ID: 22559454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech quality evaluation of a sparse coding shrinkage noise reduction algorithm with normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2015 Sep; 327():175-85. PubMed ID: 26232529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing Binaural Pre-processing Strategies III: Speech Intelligibility of Normal-Hearing and Hearing-Impaired Listeners.
    Völker C; Warzybok A; Ernst SM
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative intelligibility study of single-microphone noise reduction algorithms.
    Hu Y; Loizou PC
    J Acoust Soc Am; 2007 Sep; 122(3):1777. PubMed ID: 17927437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Objective evaluation of speech signal quality by the prediction of multiple foreground diagnostic acceptability measure attributes.
    Sen D; Lu W
    J Acoust Soc Am; 2012 May; 131(5):4087-103. PubMed ID: 22559381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of spatiotemporal pattern correction using a computational model of the auditory periphery.
    Zeyl TJ; Bruce IC
    Ear Hear; 2014; 35(2):246-55. PubMed ID: 24326394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speech processing with a cochlear-neural analog. AMRL-TR-66-229.
    Stewart JL
    AMRL TR; 1966 Dec; ():1-140. PubMed ID: 5298146
    [No Abstract]   [Full Text] [Related]  

  • 17. Modeling speech intelligibility in quiet and noise in listeners with normal and impaired hearing.
    Rhebergen KS; Lyzenga J; Dreschler WA; Festen JM
    J Acoust Soc Am; 2010 Mar; 127(3):1570-83. PubMed ID: 20329857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ideal time-frequency masking algorithms lead to different speech intelligibility and quality in normal-hearing and cochlear implant listeners.
    Koning R; Madhu N; Wouters J
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):331-41. PubMed ID: 25167542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Evaluation of Output Signal to Noise Ratio as a Predictor of Cochlear Implant Speech Intelligibility.
    Watkins GD; Swanson BA; Suaning GJ
    Ear Hear; 2018; 39(5):958-968. PubMed ID: 29474218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient auditory coding.
    Smith EC; Lewicki MS
    Nature; 2006 Feb; 439(7079):978-82. PubMed ID: 16495999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.