These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28964106)

  • 21. On the universality of the frequency spectrum and band-gap optimization of quasicrystalline-generated structured rods.
    Morini L; Gökay Tetik Z; Shmuel G; Gei M
    Philos Trans A Math Phys Eng Sci; 2020 Jan; 378(2162):20190240. PubMed ID: 31760899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of pore shapes on the band structures in phononic crystals with periodic distributed void pores.
    Liu Y; Su JY; Xu YL; Zhang XC
    Ultrasonics; 2009 Feb; 49(2):276-80. PubMed ID: 19010508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Band Gaps Characteristics Analysis of Periodic Oscillator Coupled Damping Beam.
    Tang L; Yao X; Wu G; Tang D
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33339294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid phononic crystal plates for lowering and widening acoustic band gaps.
    Badreddine Assouar M; Sun JH; Lin FS; Hsu JC
    Ultrasonics; 2014 Dec; 54(8):2159-64. PubMed ID: 24996255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic design of phononic band-gap materials and structures by topology optimization.
    Sigmund O; Jensen JS
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):1001-19. PubMed ID: 12804226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sandwich Plate Structure Periodically Attached by S-Shaped Oscillators for Low Frequency Ship Vibration Isolation.
    Shen C; Huang J; Zhang Z; Xue J; Qian D
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physics of surface vibrational resonances: pillared phononic crystals, metamaterials, and metasurfaces.
    Jin Y; Pennec Y; Bonello B; Honarvar H; Dobrzynski L; Djafari-Rouhani B; Hussein MI
    Rep Prog Phys; 2021 Sep; 84(8):. PubMed ID: 33434894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polarization of Acoustic Waves in Two-Dimensional Phononic Crystals Based on Fused Silica.
    Marunin MV; Polikarpova NV
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete band gaps of phononic crystal plates with square rods.
    El-Naggar SA; Mostafa SI; Rafat NH
    Ultrasonics; 2012 Apr; 52(4):536-42. PubMed ID: 22169591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topological Design of Cellular Phononic Band Gap Crystals.
    Li YF; Huang X; Zhou S
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Realization of Complex 3D Phononic Crystals with Wide Complete Acoustic Band Gaps.
    Lucklum F; Vellekoop M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 May; 63(5):796-767. PubMed ID: 27008667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Band gap structures in two-dimensional super porous phononic crystals.
    Liu Y; Sun XZ; Chen ST
    Ultrasonics; 2013 Feb; 53(2):518-24. PubMed ID: 23089223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Band structure calculation of 2D fluid/solid and solid/fluid phononic crystal using a modified smoothed finite element method with fluid-solid interaction.
    Yao L; Xu J; Jiang G; Wu F
    Ultrasonics; 2021 Feb; 110():106267. PubMed ID: 33035736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Band gap in tubular pillar phononic crystal plate.
    Shu F; Liu Y; Wu J; Wu Y
    Ultrasonics; 2016 Sep; 71():172-176. PubMed ID: 27376841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.
    Warmuth F; Körner C
    Materials (Basel); 2015 Dec; 8(12):8327-8337. PubMed ID: 28793713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning.
    Hopkins PE; Reinke CM; Su MF; Olsson RH; Shaner EA; Leseman ZC; Serrano JR; Phinney LM; El-Kady I
    Nano Lett; 2011 Jan; 11(1):107-12. PubMed ID: 21105717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.
    Yudistira D; Boes A; Djafari-Rouhani B; Pennec Y; Yeo LY; Mitchell A; Friend JR
    Phys Rev Lett; 2014 Nov; 113(21):215503. PubMed ID: 25479504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs.
    Mohammadi S; Eftekhar AA; Khelif A; Adibi A
    Opt Express; 2010 Apr; 18(9):9164-72. PubMed ID: 20588763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear Bloch waves and balance between hardening and softening dispersion.
    Hussein MI; Khajehtourian R
    Proc Math Phys Eng Sci; 2018 Sep; 474(2217):20180173. PubMed ID: 30333703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Omnidirectional elastic band gap in finite lamellar structures.
    Bria D; Djafari-Rouhani B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056609. PubMed ID: 12513625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.