These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28964114)

  • 1. Fast-slow asymptotics for a Markov chain model of fast sodium current.
    StarĂ½ T; Biktashev VN
    Chaos; 2017 Sep; 27(9):093937. PubMed ID: 28964114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of single noninactivating Na+ channels: evidence for two open and several fast inactivated states.
    The YK; Fernandes J; Popa MO; Alekov AK; Timmer J; Lerche H
    Biophys J; 2006 May; 90(10):3511-22. PubMed ID: 16513781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exponential integrators for a Markov chain model of the fast sodium channel of cardiomyocytes.
    StarĂ½ T; Biktashev VN
    IEEE Trans Biomed Eng; 2015 Apr; 62(4):1070-6. PubMed ID: 25376030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-channel analysis of inactivation-defective rat skeletal muscle sodium channels containing the F1304Q mutation.
    Lawrence JH; Orias DW; Balser JR; Nuss HB; Tomaselli GF; O'Rourke B; Marban E
    Biophys J; 1996 Sep; 71(3):1285-94. PubMed ID: 8874003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state availability of sodium channels. Interactions between activation and slow inactivation.
    Ruben PC; Starkus JG; Rayner MD
    Biophys J; 1992 Apr; 61(4):941-55. PubMed ID: 1316183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of "generalized Trotter operator splitting" and "quadratic adaptive algorithm" method for tradeoff among speedup, stability, and accuracy in the Markov chain model of sodium ion channels in the ventricular cell model.
    Chen XJ; Luo CH; Chen MH
    Med Biol Eng Comput; 2020 Sep; 58(9):2131-2141. PubMed ID: 32676840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison between Hodgkin-Huxley and Markov formulations of cardiac ion channels.
    Carbonell-Pascual B; Godoy E; Ferrer A; Romero L; Ferrero JM
    J Theor Biol; 2016 Jun; 399():92-102. PubMed ID: 27059892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling ion channel dynamics through reflected stochastic differential equations.
    Dangerfield CE; Kay D; Burrage K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051907. PubMed ID: 23004788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of beta-adrenergic stimulation of cardiac Ca2+ channels revealed by discrete-time Markov analysis of slow gating.
    Herzig S; Patil P; Neumann J; Staschen CM; Yue DT
    Biophys J; 1993 Oct; 65(4):1599-612. PubMed ID: 7506067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise analysis of an ion channel in the cardiac myocyte--study based on a Markov model.
    Sato S
    Math Biosci; 2007 Jun; 207(2):189-203. PubMed ID: 17174982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gating of cardiac Na+ channels in excised membrane patches after modification by alpha-chymotrypsin.
    Valenzuela C; Bennett PB
    Biophys J; 1994 Jul; 67(1):161-71. PubMed ID: 7918983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium response spectroscopy of voltage-sensitive ion channel gating.
    Millonas MM; Hanck DA
    Biophys J; 1998 Jan; 74(1):210-29. PubMed ID: 9449324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation of wild-type and mutant human cardiac Na+ current.
    Vecchietti S; Rivolta I; Severi S; Napolitano C; Priori SG; Cavalcanti S
    Med Biol Eng Comput; 2006 Mar; 44(1-2):35-44. PubMed ID: 16929919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluctuations in ion channel gating currents. Analysis of nonstationary shot noise.
    Crouzy SC; Sigworth FJ
    Biophys J; 1993 Jan; 64(1):68-76. PubMed ID: 8381683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakdown of fast-slow analysis in an excitable system with channel noise.
    Newby JM; Bressloff PC; Keener JP
    Phys Rev Lett; 2013 Sep; 111(12):128101. PubMed ID: 24093303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State-dependent block underlies the tissue specificity of lidocaine action on batrachotoxin-activated cardiac sodium channels.
    Zamponi GW; Doyle DD; French RJ
    Biophys J; 1993 Jul; 65(1):91-100. PubMed ID: 8396460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Langevin and Markov channel noise models for neuronal signal generation.
    Sengupta B; Laughlin SB; Niven JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011918. PubMed ID: 20365410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Compared Markov with fractal models by using single-channel experimental and simulation data].
    Lan T; Wu H; Lin J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):923-8. PubMed ID: 17121323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin.
    Thomas EA; Petrou S
    Epilepsia; 2013 Jul; 54(7):1195-202. PubMed ID: 23566163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A C-terminal skeletal muscle sodium channel mutation associated with myotonia disrupts fast inactivation.
    Wu FF; Gordon E; Hoffman EP; Cannon SC
    J Physiol; 2005 Jun; 565(Pt 2):371-80. PubMed ID: 15774523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.