These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28964126)

  • 1. Modeling bipolar stimulation of cardiac tissue.
    Galappaththige SK; Gray RA; Roth BJ
    Chaos; 2017 Sep; 27(9):093920. PubMed ID: 28964126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode.
    Roth BJ
    IEEE Trans Biomed Eng; 1995 Dec; 42(12):1174-84. PubMed ID: 8550059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation.
    Wikswo JP; Lin SF; Abbas RA
    Biophys J; 1995 Dec; 69(6):2195-210. PubMed ID: 8599628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical stimulation of cardiac tissue by a bipolar electrode in a conductive bath.
    Latimer DC; Roth BJ
    IEEE Trans Biomed Eng; 1998 Dec; 45(12):1449-58. PubMed ID: 9835193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms for electrical stimulation of excitable tissue.
    Roth BJ
    Crit Rev Biomed Eng; 1994; 22(3-4):253-305. PubMed ID: 8598130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel mechanism of anode-break stimulation predicted by bidomain modeling.
    Ranjan R; Tomaselli GF; Marbán E
    Circ Res; 1999 Feb; 84(2):153-6. PubMed ID: 9933246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ventricular excitability-interval relationship in early diastole in humans: the influence of the electrode configuration during bipolar stimulation.
    Toivonen LK; Kadish AH; Kou WH; Morady F
    Pacing Clin Electrophysiol; 1990 Jul; 13(7):875-81. PubMed ID: 1695744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring anodal and cathodal make and break cardiac excitation mechanisms in a 3D anisotropic bidomain model.
    Colli-Franzone P; Pavarino LF; Scacchi S
    Math Biosci; 2011 Apr; 230(2):96-114. PubMed ID: 21329705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The time constants for cathodic make stimulation of electrical syncytia: an application to cardiac pacing.
    Suárez-Antola RE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4031-4. PubMed ID: 17945820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonsustained reentry following successive stimulation of cardiac tissue through a unipolar electrode.
    Roth BJ
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):768-78. PubMed ID: 9255684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The strength-interval curve in cardiac tissue.
    Kandel SM; Roth BJ
    Comput Math Methods Med; 2013; 2013():134163. PubMed ID: 23509598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidomain Predictions of Virtual Electrode-Induced Make and Break Excitations around Blood Vessels.
    Connolly AJ; Vigmond E; Bishop MJ
    Front Bioeng Biotechnol; 2017; 5():18. PubMed ID: 28396856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporary unipolar pacing using a dual cathode.
    Preston TA
    J Electrocardiol; 1976 Apr; 9(2):193-7. PubMed ID: 1262780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anode-break excitation during end-diastolic stimulation is explained by half-cell double layer discharge.
    Nikolski V; Sambelashvili A; Efimov IR
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1217-20. PubMed ID: 12374349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of the anode to ventricular excitation during bipolar programmed electrical stimulation.
    Stevenson WG; Wiener I; Weiss JN
    Am J Cardiol; 1986 Mar; 57(8):582-6. PubMed ID: 3953443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strength-interval curves for cardiac tissue predicted using the bidomain model.
    Roth BJ
    J Cardiovasc Electrophysiol; 1996 Aug; 7(8):722-37. PubMed ID: 8856463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of premature anodal stimulations on cardiac transmembrane potential and intracellular calcium distributions computed by anisotropic Bidomain models.
    Colli Franzone P; Pavarino LF; Scacchi S
    Europace; 2014 May; 16(5):736-42. PubMed ID: 24798963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spiral wave control by a localized stimulus: a bidomain model study.
    Ashihara T; Namba T; Ito M; Ikeda T; Nakazawa K; Trayanova N
    J Cardiovasc Electrophysiol; 2004 Feb; 15(2):226-33. PubMed ID: 15028055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The mechanism of impulse initiation: high-resolution epicardial pace-mapping in rat heart].
    Macchi E; Baruffi S; Bondavalli A; Cacciani F; Miragoli M; Manghi M; Musso E; Olivetti G; Rota M; Stilli D; Zaniboni M
    Acta Biomed Ateneo Parmense; 2001; 72(1-2):25-32. PubMed ID: 11554121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac strength-interval curves calculated using a bidomain tissue with a parsimonious ionic current.
    Galappaththige SK; Gray RA; Roth BJ
    PLoS One; 2017; 12(2):e0171144. PubMed ID: 28222136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.