These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 28964158)

  • 1. Efficient parameterization of cardiac action potential models using a genetic algorithm.
    Cairns DI; Fenton FH; Cherry EM
    Chaos; 2017 Sep; 27(9):093922. PubMed ID: 28964158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting undetectables: Can conductances of action potential models be changed without appreciable change in the transmembrane potential?
    Jæger KH; Wall S; Tveito A
    Chaos; 2019 Jul; 29(7):073102. PubMed ID: 31370420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fitting membrane resistance along with action potential shape in cardiac myocytes improves convergence: application of a multi-objective parallel genetic algorithm.
    Kaur J; Nygren A; Vigmond EJ
    PLoS One; 2014; 9(9):e107984. PubMed ID: 25250956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameter estimation in cardiac ionic models.
    Dokos S; Lovell NH
    Prog Biophys Mol Biol; 2004; 85(2-3):407-31. PubMed ID: 15142755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atrial cell action potential parameter fitting using genetic algorithms.
    Syed Z; Vigmond E; Nattel S; Leon LJ
    Med Biol Eng Comput; 2005 Sep; 43(5):561-71. PubMed ID: 16411628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fitting local repolarization parameters in cardiac reaction-diffusion models in the presence of electrotonic coupling.
    Aswath Kumar AK; Drahi A; Jacquemet V
    Comput Biol Med; 2017 Feb; 81():55-63. PubMed ID: 28012295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal correlation uncovers characteristic lengths in cardiac tissue.
    Loppini A; Gizzi A; Cherubini C; Cherry EM; Fenton FH; Filippi S
    Phys Rev E; 2019 Aug; 100(2-1):020201. PubMed ID: 31574686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quadratic adaptive algorithm for solving cardiac action potential models.
    Chen MH; Chen PY; Luo CH
    Comput Biol Med; 2016 Oct; 77():261-73. PubMed ID: 27639239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of model error on cardiac electrical wave state reconstruction using data assimilation.
    LaVigne NS; Holt N; Hoffman MJ; Cherry EM
    Chaos; 2017 Sep; 27(9):093911. PubMed ID: 28964160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algorithm for multi-curve-fitting with shared parameters and a possible application in evoked compound action potential measurements.
    Spitzer P; Zierhofer C; Hochmair E
    Biomed Eng Online; 2006 Feb; 5():13. PubMed ID: 16504064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous and half-center bursting in morphologically inspired models of leech heart interneurons.
    Tobin AE; Calabrese RL
    J Neurophysiol; 2006 Oct; 96(4):2089-106. PubMed ID: 16760353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Bi-Level Framework for Fitting the Parameters in Cardiac Cellular Models.
    Pouranbarani E; Nygren A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2370-2373. PubMed ID: 30440883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A gradient model of cardiac pacemaker myocytes.
    Lovell NH; Cloherty SL; Celler BG; Dokos S
    Prog Biophys Mol Biol; 2004; 85(2-3):301-23. PubMed ID: 15142749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational cardiac electrophysiology: implementing mathematical models of cardiomyocytes to simulate action potentials of the heart.
    Bell MM; Cherry EM
    Methods Mol Biol; 2015; 1299():65-74. PubMed ID: 25836575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robust multi-objective optimization framework to capture both cellular and intercellular properties in cardiac cellular model tuning: Analyzing different regions of membrane resistance profile in parameter fitting.
    Pouranbarani E; Weber Dos Santos R; Nygren A
    PLoS One; 2019; 14(11):e0225245. PubMed ID: 31730631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternans promotion in cardiac electrophysiology models by delay differential equations.
    Gomes JM; Dos Santos RW; Cherry EM
    Chaos; 2017 Sep; 27(9):093915. PubMed ID: 28964124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonparametric approach to extract information from interspike interval data.
    Rossoni E; Feng J
    J Neurosci Methods; 2006 Jan; 150(1):30-40. PubMed ID: 16111762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Models of cardiac tissue electrophysiology: progress, challenges and open questions.
    Clayton RH; Bernus O; Cherry EM; Dierckx H; Fenton FH; Mirabella L; Panfilov AV; Sachse FB; Seemann G; Zhang H
    Prog Biophys Mol Biol; 2011 Jan; 104(1-3):22-48. PubMed ID: 20553746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing parameters of the FitzHugh-Nagumo system from boundary potential measurements.
    He Y; Keyes DE
    J Comput Neurosci; 2007 Oct; 23(2):251-64. PubMed ID: 17492372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding cardiac alternans: a piecewise linear modeling framework.
    Thul R; Coombes S
    Chaos; 2010 Dec; 20(4):045102. PubMed ID: 21198114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.