These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28964162)

  • 1. Temperature, geometry, and bifurcations in the numerical modeling of the cardiac mechano-electric feedback.
    Collet A; Bragard J; Dauby PC
    Chaos; 2017 Sep; 27(9):093924. PubMed ID: 28964162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of mechano-electrical feedback on the onset of alternans: A computational study.
    Hazim A; Belhamadia Y; Dubljevic S
    Chaos; 2019 Jun; 29(6):063126. PubMed ID: 31266317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrative appraisal of mechano-electric feedback mechanisms in the heart.
    Timmermann V; Dejgaard LA; Haugaa KH; Edwards AG; Sundnes J; McCulloch AD; Wall ST
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):404-417. PubMed ID: 28851517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [One-dimensional time-dependent model of the cardiac pacemaker activity induced by the mechanoelectric feedback in a thermo-electro-mechanical background].
    Collet A; Desaive T; Dauby PC
    Ann Cardiol Angeiol (Paris); 2012 Jun; 61(3):156-61. PubMed ID: 22681984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechano-electric feedback effects in a three-dimensional (3D) model of the contracting cardiac ventricle.
    Amar A; Zlochiver S; Barnea O
    PLoS One; 2018; 13(1):e0191238. PubMed ID: 29342222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of whole heart geometry by intramyocardial mechano-feedback: a model study.
    Arts T; Lumens J; Kroon W; Delhaas T
    PLoS Comput Biol; 2012 Feb; 8(2):e1002369. PubMed ID: 22346742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear diffusion and thermo-electric coupling in a two-variable model of cardiac action potential.
    Gizzi A; Loppini A; Ruiz-Baier R; Ippolito A; Camassa A; La Camera A; Emmi E; Di Perna L; Garofalo V; Cherubini C; Filippi S
    Chaos; 2017 Sep; 27(9):093919. PubMed ID: 28964112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechano-electric feedback in one-dimensional model of myocardium.
    Vikulova NA; Katsnelson LB; Kursanov AG; Solovyova O; Markhasin VS
    J Math Biol; 2016 Aug; 73(2):335-66. PubMed ID: 26687545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of cardiac alternans by mechanical and electrical feedback.
    Yapari F; Deshpande D; Belhamadia Y; Dubljevic S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012706. PubMed ID: 25122334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heart rate variability and alternans formation in the heart: The role of feedback in cardiac dynamics.
    McIntyre SD; Kakade V; Mori Y; Tolkacheva EG
    J Theor Biol; 2014 Jun; 350():90-7. PubMed ID: 24576615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global coupling in excitable media provides a simplified description of mechanoelectrical feedback in cardiac tissue.
    Alvarez-Lacalle E; Echebarria B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031921. PubMed ID: 19391985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels.
    Zabel M; Koller BS; Sachs F; Franz MR
    Cardiovasc Res; 1996 Jul; 32(1):120-30. PubMed ID: 8776409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaotic dynamics in an ionic model of the propagated cardiac action potential.
    Lewis TJ; Guevara MR
    J Theor Biol; 1990 Oct; 146(3):407-32. PubMed ID: 2259213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanoelectrical feedback in the healthy heart and in the heart with pathologies].
    Kamkin AG; Kiseleva IS
    Usp Fiziol Nauk; 2000; 31(2):51-78. PubMed ID: 10822834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding cardiac alternans: a piecewise linear modeling framework.
    Thul R; Coombes S
    Chaos; 2010 Dec; 20(4):045102. PubMed ID: 21198114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexisting chaotic and multi-periodic dynamics in a model of cardiac alternans.
    Skardal PS; Restrepo JG
    Chaos; 2014 Dec; 24(4):043126. PubMed ID: 25554046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of mechanical feedback on the stability of cardiac scroll waves: A bidomain electro-mechanical simulation study.
    Colli Franzone P; Pavarino LF; Scacchi S
    Chaos; 2017 Sep; 27(9):093905. PubMed ID: 28964121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure].
    Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP
    Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species and autonomic regulation of cardiac excitability.
    Danson EJ; Paterson DJ
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S104-S112. PubMed ID: 16686664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.